Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = benzilic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5963 KiB  
Article
Tin Complexes Derived from the Acids Ph2C(X)CO2H (X = OH, NH2): Structure and ROP Capability
by Timothy J. Prior and Carl Redshaw
Catalysts 2025, 15(3), 261; https://doi.org/10.3390/catal15030261 - 9 Mar 2025
Viewed by 832
Abstract
Interaction of [Sn(OtBu)4] with the acid 2,2′-diphenylgylcine, Ph2C(X)CO2H (X = NH2), affords the complex {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN) after work-up, whereas when X = OH [...] Read more.
Interaction of [Sn(OtBu)4] with the acid 2,2′-diphenylgylcine, Ph2C(X)CO2H (X = NH2), affords the complex {Sn[Ph2C(NH2)(CO2)]4}·2MeCN (1·2MeCN) after work-up, whereas when X = OH (benzilic acid), the complex {Sn[Ph2C(O)(CO2)]2(CH3CO2H)2} (2) is isolated. In 1·2MeCN, the four 2,2′-diphenylglycinate ligands adopt three different coordination modes (two N,O-chelates, an O,O-chelate, and a monodentate carboxylate ligand), whilst in 2, two cis-O,O-chelate ligands are present along with two acetic acid ligands, the latter being derived from hydrolysis of acetonitrile. Both 1 and 2 have been screened as catalysts for the ring opening polymerization of ε-caprolactone and δ-valerolactone; for comparison, the commercial catalyst [Sn(Oct)2], where Oct = 2-ethylhexanoate, and the precursor [Sn(OtBu)4] have been screened under similar conditions. The products were of low to high molecular weight for PCL and low to moderate molecular weight for PVL, with wide Ð values, and they comprised several types of polymer families, including OH-terminated, OH/OMe-terminated, and cyclic polymers. For both monomers, kinetic profiles indicated that [Sn(Oct)2] outperformed 1, 2, and [Sn(OtBu)4], though under certain conditions, 1 and 2 afforded high-molecular weight products with better control. Full article
(This article belongs to the Special Issue State-of-the-Art Polymerization Catalysis)
Show Figures

Graphical abstract

23 pages, 6712 KiB  
Article
Ring Opening Polymerization of Lactides and Lactones by Multimetallic Titanium Complexes Derived from the Acids Ph2C(X)CO2H (X = OH, NH2)
by Xin Zhang, Timothy J. Prior, Kai Chen, Orlando Santoro and Carl Redshaw
Catalysts 2022, 12(9), 935; https://doi.org/10.3390/catal12090935 - 24 Aug 2022
Cited by 7 | Viewed by 3010
Abstract
The reactions of the titanium alkoxide [Ti(OR)4] (R = Me, nPr, iPr, tBu) with the acids 2,2′-Ph2C(X)(CO2H), where X = OH and NH2, i.e., benzilic acid (2,2′-diphenylglycolic acid, L1H2 [...] Read more.
The reactions of the titanium alkoxide [Ti(OR)4] (R = Me, nPr, iPr, tBu) with the acids 2,2′-Ph2C(X)(CO2H), where X = OH and NH2, i.e., benzilic acid (2,2′-diphenylglycolic acid, L1H2), and 2,2′-diphenylglycine (L2H3), have been investigated. The variation of the reaction stoichiometry allows for the isolation of mono-, bi-, tri or tetra-metallic products, the structures of which have been determined by X-ray crystallography. The ability of the resulting complexes to act as catalysts for the ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and r-lactide (r-LA) has been investigated. In the case of ε-CL, all catalysts except that derived from [Ti(OnPr)4] and L2H3, i.e., 7, exhibited an induction period of between 60 and 285 min, with 7 exhibiting the best performance (>99% conversion within 6 min). The PCL products are moderate- to high-molecular weight polymers. For r-LA, systems 1, 3, 4 and 7 afforded conversions of ca. 90% or more, with 4 exhibiting the fastest kinetics. The molecular weights for the PLA are somewhat higher than those of the PCL, with both cyclic and linear PLA products (end groups of OR/OH) identified. Comparative studies versus the [Ti(OR)4] starting materials were conducted, and although high conversions were achieved, the control was poor. Full article
(This article belongs to the Special Issue Catalysts for the Ring Opening Polymerization)
Show Figures

Graphical abstract

18 pages, 2412 KiB  
Article
Conversion of Plant Secondary Metabolites upon Fermentation of Mercurialis perennis L. Extracts with two Lactobacteria Strains
by Peter Lorenz, Marek Bunse, Simon Sauer, Jürgen Conrad, Florian C. Stintzing and Dietmar R. Kammerer
Fermentation 2019, 5(2), 42; https://doi.org/10.3390/fermentation5020042 - 17 May 2019
Cited by 10 | Viewed by 8117
Abstract
Microbial fermentation of plant extracts with Lactobacteria is an option to obtain microbiologically stable preparations, which may be applied in complementary medicine. We investigated the metabolic conversion of constituents from Mercurialis perennis L. extracts, which were prepared for such applications. For this purpose, [...] Read more.
Microbial fermentation of plant extracts with Lactobacteria is an option to obtain microbiologically stable preparations, which may be applied in complementary medicine. We investigated the metabolic conversion of constituents from Mercurialis perennis L. extracts, which were prepared for such applications. For this purpose, aqueous extracts were inoculated with two Lactobacteria strains, namely Pediococcus sp. (PP1) and Lactobacillus sp. (LP1). Both were isolated from a fermented M. perennis extract and identified by 16S rRNA sequencing. After 1 day of fermentation, an almost complete conversion of the genuine piperidine-2,6-dione alkaloids hermidine quinone (3) and chrysohermidin (4)—both of them being oxidation products of hermidin (1) —was observed by GC-MS analysis, while novel metabolites such as methylhermidin (6) and methylhermidin quinone (7) were formed. Surprisingly, a novel compound plicatanin B (bis-(3-methoxy-1N-methylmaleimide); 8) was detected after 6 days, obviously being formed by ring contraction of 4. An intermediate of a postulated reaction mechanism, isochrysohermidinic acid (14), could be detected by LC-MS. Furthermore, an increase in contents of the metabolite mequinol (4-methoxyphenol; 9) upon fermentation points to a precursor glycoside of 9, which could be subsequently detected by GC-MS after silylation and identified as methylarbutin (15). 15 is described here for M. perennis for the first time. Full article
Show Figures

Graphical abstract

13 pages, 669 KiB  
Article
B-norsteroids from Hymenoscyphus pseudoalbidus
by Pierre F. Andersson, Stina Bengtsson, Jan Stenlid and Anders Broberg
Molecules 2012, 17(7), 7769-7781; https://doi.org/10.3390/molecules17077769 - 25 Jun 2012
Cited by 24 | Viewed by 10090
Abstract
Two viridin-related B-norsteroids, B-norviridiol lactone (1) and B-norviridin enol (2), both possessing distinct unprecedented carbon skeletons, were isolated from a liquid culture of the ash dieback-causing fungus Hymenoscyphus pseudoalbidus. Compound 2 was found to degrade to a third [...] Read more.
Two viridin-related B-norsteroids, B-norviridiol lactone (1) and B-norviridin enol (2), both possessing distinct unprecedented carbon skeletons, were isolated from a liquid culture of the ash dieback-causing fungus Hymenoscyphus pseudoalbidus. Compound 2 was found to degrade to a third B-norsteroidal compound, 1β-hydroxy-2α-hydro-asterogynin A (3), which was later detected in the original culture. The proposed structure of 1 is, regarding connectivity, identical to the original erroneous structure for TAEMC161, which was later reassigned as viridiol. Compound 2 showed an unprecedented 1H-13C HMBC correlation through an intramolecular hydrogen bond. The five-membered B-ring of compounds 1–3 was proposed to be formed by a benzilic acid rearrangement. The known compound asterogynin A was found to be formed from 3 by a β-elimination of water. All compounds were characterized by NMR spectroscopy, LC-HRMS and polarimetry. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop