Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = band grouping (BG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4003 KiB  
Article
Exploring Layered Ruddlesden-Popper Structures for High-Performance Energy Devices
by Ahmad Hussain, Sumaira Zafar, Nawishta Jabeen, Muhammad Usman Khan, Imtiaz Ahmad Khan and Mahmoud M. Hessien
Inorganics 2025, 13(6), 203; https://doi.org/10.3390/inorganics13060203 - 17 Jun 2025
Viewed by 521
Abstract
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA [...] Read more.
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA approaches have been implemented using the CASTEP tool. The exchange–correlation approximation calculations show that the La2XO4 (where X = Ni, Fe, Ba, and Pb) compounds possess no band gap. The results indicate that the compounds are metallic, which are ideal for supercapacitor (SC) applications. The compound’s optical conductivity, dielectric function, extinction coefficients, absorption refractive index, loss function, and reflectivity are also analyzed for SC applications. UV spectra of the compounds observed high absorption coefficient (105 cm−1), dielectric function (9–10), optical conductivity (7 fs−1), and refractive index (4) values. Furthermore, as B/G > 1.75, the mechanical (elastic) properties have shown ductile behavior and mechanical stability. Using the Born stability criteria, the mechanical stability of the compounds is examined. All of the compounds are ductile, according to Pugh’s and Frantesvich ratios. Finally, time-simulations-dependent temperature stability plots for the compounds are computed by employing dynamical stability with norm-conserved pseudopotential, which confirm their potential for SC applications. Full article
Show Figures

Graphical abstract

14 pages, 4182 KiB  
Article
First-Principles Calculations of the Structural, Mechanical, Optical, and Electronic Properties of X2Bi4Ti5O18 (X = Pb, Ba, Ca, and Sr) Bismuth-Layered Materials for Photovoltaic Applications
by Ahmad Hussain, Fatima Kainat, Nawishta Jabeen, Ali Yaqoob, Tassawar Abbas, Muhammad Usman Khan, Muhammad Adnan Qaiser and M. H. H. Mahmoud
Crystals 2024, 14(10), 870; https://doi.org/10.3390/cryst14100870 - 2 Oct 2024
Cited by 7 | Viewed by 1388
Abstract
For the first time, density functional theory (DFT) calculations have been employed for the measurement of the structural, mechanical, optical, and electrical properties of a bismuth-layered structure ferroelectrics (BLSFs) family member possessing an orthorhombic structure with Cmc21 space group. Based on the [...] Read more.
For the first time, density functional theory (DFT) calculations have been employed for the measurement of the structural, mechanical, optical, and electrical properties of a bismuth-layered structure ferroelectrics (BLSFs) family member possessing an orthorhombic structure with Cmc21 space group. Based on the exchange–correlation approximation, our calculations show that Pb2Bi4Ti5O18 possesses an indirect band gap, while the materials X2Bi4Ti5O18 (X = Ba, Ca, and Sr) demonstrate direct band gap, where the estimated density functional fundamental band gap values lie between 1.84 to 2.33 eV, which are ideal for photovoltaic applications. The optical performance of these materials has been investigated by tuning the band gaps. The materials demonstrated outstanding optical characteristics, such as high absorption coefficients and low reflection. They exhibited impressive absorption coefficient (α = 105 cm−1) throughout a broad energy range, especially in the visible spectrum (105 cm−1 region). The findings show that the compounds demonstrate lower reflectivity in the visible and UV regions, making them suitable for single-junction photovoltaic cells and optoelectronic applications. The Voigt–Reuss–Hill averaging technique has been employed to derive elastic parameters like bulk modulus (B), Young’s modulus, shear modulus (G), the Pugh ratio (B/G) and the Frantesvich ratio (G/B) at 0.1 GPa. The mechanical stability of the compounds was analyzed using the Born stability criteria. Pugh’s ratio and Frantesvich’s ratio show that all the compounds are ductile, making them ideal for flexible optical applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 3193 KiB  
Article
SN 2017fzw: A Fast-Expanding Type Ia Supernova with Transitional Features
by Jiayu Huang, Yangyang Li, Xiangyun Zeng, Sheng Zheng, Sarah A. Bird, Jujia Zhang, Ali Esamdin, Abdusamatjan Iskandar, K. Azaleee Bostroem, Shuguang Zeng, Yanshan Xiao, Yao Huang, D. Andrew Howell, Curtis McCully, Wenxiong Li, Tianmeng Zhang, Lifan Wang and Lei Hu
Universe 2023, 9(6), 295; https://doi.org/10.3390/universe9060295 - 17 Jun 2023
Cited by 1 | Viewed by 2133
Abstract
In this study, we analyzed the optical observations of a subluminous Type Ia supernova (SN Ia) 2017fzw, which exhibited high photospheric velocity (HV) at B-band maximum light. The absolute B-band peak magnitude was determined to be [...] Read more.
In this study, we analyzed the optical observations of a subluminous Type Ia supernova (SN Ia) 2017fzw, which exhibited high photospheric velocity (HV) at B-band maximum light. The absolute B-band peak magnitude was determined to be MmaxB=18.65±0.13 mag, similar to 91bg-like SNe Ia. An estimation of the rate of decline for the B-band light curve was determined to be Δm15(B)=1.60±0.06 mag. The spectra of SN 2017fzw were similar to those of 91bg-like SNe Ia, with prominent Ti ii and Si ii λ5972 features at early phases, gradually transitioning to spectra resembling normal (mainly HV subclass) SNe Ia at later phases, with a stronger Ca ii NIR feature. Notably, throughout all phases of observation, SN 2017fzw displayed spectral evolution characteristics that were comparable to those of HV SNe Ia, and at peak brightness, the Si ii λ6355 velocity was determined to be 13,800 ± 415 km s1 and a more pronounced Ca ii NIR feature was also detected. Based on these findings, we classify SN 2017fzw as a transitional object with properties of both normal and 91bg-like SNe Ia, providing support for the hypothesis of a continuous distribution of supernovae between these two groups. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

16 pages, 4737 KiB  
Article
Emission Spectroscopy of CH4/CO2 Mixtures Processed in a Non-Thermal Plasma Augmented Burner
by Ernest Bykov, Nerijus Striūgas and Rolandas Paulauskas
Catalysts 2022, 12(12), 1540; https://doi.org/10.3390/catal12121540 - 30 Nov 2022
Cited by 6 | Viewed by 2306
Abstract
The need for energy resources that do not belong to the group of fossil fuels and a wide availability of various low-calorific gases leads humanity to search for solutions to adapt external sources of force that would allow for the use of these [...] Read more.
The need for energy resources that do not belong to the group of fossil fuels and a wide availability of various low-calorific gases leads humanity to search for solutions to adapt external sources of force that would allow for the use of these resources. One of such solutions is the usage of non-thermal plasma applications for pre-ignition stage, ignition, and, finally, combustion. Plasma assistance is a promising technology for improving processes of ignition and flame stabilization, as well as propagating flame speed. This study focuses on influence of the non-thermal plasma on both for CH4, CO2 gases, and their mixture in pre-ignition stage by performing emission spectroscopy, and determining tendency of excited species at different frequency rates for optimal plasma parameters to reduce NO formation and increase efficiency during combustion. The results obtained exhibit a non-linear dependence of radical’s emission from the frequency of plasma. As an example of possible profits from correctly choosing plasma parameters, the calorific value of gases increased from 2.86 times for BG25/75 to 4.78 times for BG30/70. However, the decomposition on higher frequencies causes higher rates of nitrogen-bands emissions, which would increase NOx emissions in the combustion process. Full article
Show Figures

Figure 1

25 pages, 7311 KiB  
Article
A Band Subset Selection Approach Based on Sparse Self-Representation and Band Grouping for Hyperspectral Image Classification
by Keng-Hao Liu, Yu-Kai Chen and Tsun-Yang Chen
Remote Sens. 2022, 14(22), 5686; https://doi.org/10.3390/rs14225686 - 10 Nov 2022
Cited by 7 | Viewed by 2539
Abstract
Band subset selection (BSS) is one of the ways to implement band selection (BS) for a hyperspectral image (HSI). Different from conventional BS methods, which select bands one by one, BSS selects a band subset each time and preserves the best one from [...] Read more.
Band subset selection (BSS) is one of the ways to implement band selection (BS) for a hyperspectral image (HSI). Different from conventional BS methods, which select bands one by one, BSS selects a band subset each time and preserves the best one from the collection of the band subsets. This paper proposes a BSS method, called band grouping-based sparse self-representation BSS (BG-SSRBSS), for hyperspectral image classification. It formulates BS as a sparse self-representation (SSR) problem in which the entire bands can be represented by a set of informatively complementary bands. The BG-SSRBSS consists of two steps. To tackle the issue of selecting redundant bands, it first applies band grouping (BG) techniques to pre-group the entire bands to form multiple band groups, and then performs band group subset selection (BGSS) to find the optimal band group subset. The corresponding representative bands are taken as the BS result. To efficiently find the nearly global optimal subset among all possible band group subsets, sequential and successive iterative search algorithms are adopted. Land cover classification experiments conducted on three real HSI datasets show that BG-SSRBSS can improve classification accuracy by 4–20% compared to the existing BSS methods and requires less computation time. Full article
(This article belongs to the Special Issue Advances in Hyperspectral Data Exploitation II)
Show Figures

Figure 1

11 pages, 1994 KiB  
Article
A 1Ns Disomic Addition from Psathyrostachys Huashanica Keng Confers Resistance to Powdery Mildew in Wheat
by Jing Han, Yuxiu Liu, Chenchen Hou, Jiachuang Li, Jinglin Wang, Qiaoying Zhang, Qunhui Yang, Xinhong Chen and Jun Wu
Agronomy 2020, 10(2), 312; https://doi.org/10.3390/agronomy10020312 - 24 Feb 2020
Cited by 14 | Viewed by 3586
Abstract
Powdery mildew is a fungal disease that threatens wheat production throughout the world. Breeding resistant cultivars is an effective way to reduce harm caused by powdery mildew. In this study, 35 wheat-Psathyrostachys huashanica-derived lines were developed by crossing common wheat and [...] Read more.
Powdery mildew is a fungal disease that threatens wheat production throughout the world. Breeding resistant cultivars is an effective way to reduce harm caused by powdery mildew. In this study, 35 wheat-Psathyrostachys huashanica-derived lines were developed by crossing common wheat and P. huashanica Keng (2n = 2x = 14, NsNs) using embryo culture. Resistance to powdery mildew in the derived lines was identified at the seedling and adult stages. Line H5-5-4-2 was selected with immunity to powdery mildew at both growth stages. The chromosome structure of this line was characterized by cytology, genomic in situ hybridization (GISH), and expressed sequence tag-sequence-tagged site (EST-STS) analysis. The chromosome configuration was 2n = 44 = 22II. Two P. huashanica chromosomes with strong hybridization signals were detected by GISH analysis. Among 83 EST-STS markers that covered all seven homologous groups in wheat, three pairs of STS markers, BE497584, BF202643, and BG262410, located in wheat homologous group 1 amplified clear specific bands related to P. huashanica. The results indicated that resistant line H5-5-4-2 was a wheat-P. huashanica 1Ns disomic addition line. Full article
(This article belongs to the Special Issue Analysis of Crop Genetic and Germplasm Diversity)
Show Figures

Figure 1

13 pages, 3223 KiB  
Article
A Novel Silicon Allotrope in the Monoclinic Phase
by Chaogang Bai, Changchun Chai, Qingyang Fan, Yuqian Liu and Yintang Yang
Materials 2017, 10(4), 441; https://doi.org/10.3390/ma10040441 - 22 Apr 2017
Cited by 18 | Viewed by 5798 | Correction
Abstract
This paper describes a new silicon allotrope in the P2/m space group found by first-principles calculations using the Cambridge Serial Total Energy Package (CASTEP) plane-wave code. The examined P2/m-Si belongs to the monoclinic crystal system. P2/m [...] Read more.
This paper describes a new silicon allotrope in the P2/m space group found by first-principles calculations using the Cambridge Serial Total Energy Package (CASTEP) plane-wave code. The examined P2/m-Si belongs to the monoclinic crystal system. P2/m-Si is an indirect band-gap semiconductor with a band gap of 1.51 eV, as determined using the HSE06 hybrid functional. The elastic constants, phonon spectra and enthalpy indicate that P2/m-Si is mechanically, dynamically, and thermodynamically stable. P2/m-Si is a low-density (2.19 g/cm3) silicon allotrope. The value of B/G is less than 1.75, which indicates that the new allotrope is brittle. It is shown that the difference in the elastic anisotropy along different orientations is greater than that in other phases. Finally, to understand the thermodynamic properties of P2/m-Si, the thermal expansion coefficient α, the Debye temperature ΘD, and the heat capacities CP and CV are also investigated in detail. Full article
(This article belongs to the Special Issue Computational Multiscale Modeling and Simulation in Materials Science)
Show Figures

Figure 1

Back to TopTop