Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = banagrass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5770 KiB  
Article
Environmental Impact Assessment of Banagrass-Based Cellulosic Ethanol Production on Hawaii Island: A Spatial Analysis of Re-Suspended Soil Dust and Carbon Dioxide Emission
by Chinh C. Tran and John F. Yanagida
Appl. Sci. 2019, 9(13), 2648; https://doi.org/10.3390/app9132648 - 29 Jun 2019
Viewed by 3093
Abstract
Environmental impacts from the development of banagrass (Pennisetum purpureum)-based ethanol production on Hawaii Island may create air quality problems. Air pollutants considered in this study include re-suspended soil dust (also known as PM2.5 and PM10) and carbon dioxide [...] Read more.
Environmental impacts from the development of banagrass (Pennisetum purpureum)-based ethanol production on Hawaii Island may create air quality problems. Air pollutants considered in this study include re-suspended soil dust (also known as PM2.5 and PM10) and carbon dioxide (CO2) emission. The resulting pollutant emissions are then compared against the Federal Prevention of Significant Deterioration (PSD) significant standard for the environmental impact assessment. This study combines GIS and a mathematical computational model to logically and effectively examine potential spatial impacts of ethanol development on air quality on Hawaii Island. This study found that mechanical harvesting of banagrass generates higher dust emission than other agricultural crops. The total PM10 emission of 248.18 tons per year was found statistically equivalent to the PSD significant permitting requirement limit of 250 tons per year (tpy) and thus considered as a major stationary source of fugitive dust pollution. The annual CO2 emission amount of 19,371.72 tons is less than the PSD significant permitting requirement of 75,000 tons of CO2 per year. As a result, this estimated amount is not considered as a major stationary source of pollution. Full article
(This article belongs to the Special Issue Biomass Energy and Biomass as a Clean Renewable Fuel)
Show Figures

Figure 1

15 pages, 2909 KiB  
Article
Effect of Moisture Content on Lignocellulosic Power Generation: Energy, Economic and Environmental Impacts
by Karthik Rajendran
Processes 2017, 5(4), 78; https://doi.org/10.3390/pr5040078 - 6 Dec 2017
Cited by 10 | Viewed by 7799
Abstract
The moisture content of biomass affects its processing for applications such as electricity or steam. In this study, the effects of variation in moisture content of banagrass and energycane was evaluated using techno-economic analysis and life-cycle assessments. A 25% loss of moisture was [...] Read more.
The moisture content of biomass affects its processing for applications such as electricity or steam. In this study, the effects of variation in moisture content of banagrass and energycane was evaluated using techno-economic analysis and life-cycle assessments. A 25% loss of moisture was assumed as a variation that was achieved by field drying the biomass. Techno-economic analysis revealed that high moisture in the biomass was not economically feasible. Comparing banagrass with energycane, the latter was more economically feasible; thanks to the low moisture and ash content in energycane. About 32 GWh/year of electricity was produced by field drying 60,000 dry MT/year energycane. The investment for different scenarios ranged between $17 million and $22 million. Field-dried energycane was the only economically viable option that recovered the investment after 11 years of operation. This scenario was also more environmentally friendly, releasing 16-gCO2 equivalent/MJ of electricity produced. Full article
Show Figures

Figure 1

19 pages, 2212 KiB  
Article
Can Hawaii Meet Its Renewable Fuel Target? Case Study of Banagrass-Based Cellulosic Ethanol
by Chinh Tran and John Yanagida
ISPRS Int. J. Geo-Inf. 2016, 5(8), 146; https://doi.org/10.3390/ijgi5080146 - 16 Aug 2016
Cited by 2 | Viewed by 5009
Abstract
Banagrass is a biomass crop candidate for ethanol production in the State of Hawaii. This study examines: (i) whether enough banagrass can be produced to meet Hawaii’s renewable fuel target of 20% highway fuel demand produced with renewable sources by 2020 and (ii) [...] Read more.
Banagrass is a biomass crop candidate for ethanol production in the State of Hawaii. This study examines: (i) whether enough banagrass can be produced to meet Hawaii’s renewable fuel target of 20% highway fuel demand produced with renewable sources by 2020 and (ii) at what cost. This study proposes to locate suitable land areas for banagrass production and ethanol processing, focusing on the two largest islands in the state of Hawaii—Hawaii and Maui. The results suggest that the 20% target is not achievable by using all suitable land resources for banagrass production on both Hawaii and Maui. A total of about 74,224,160 gallons, accounting for 16.04% of the state’s highway fuel demand, can be potentially produced at a cost of $6.28/gallon. Lower ethanol cost is found when using a smaller production scale. The lowest cost of $3.31/gallon is found at a production processing capacity of about 9 million gallons per year (MGY), which meets about 2% of state demand. This cost is still higher than the average imported ethanol price of $3/gallon. Sensitivity analysis finds that it is possible to produce banagrass-based ethanol on Hawaii Island at a cost below the average imported ethanol price if banagrass yield increases of at least 35.56%. Full article
(This article belongs to the Special Issue Intelligent Spatial Decision Support)
Show Figures

Figure 1

Back to TopTop