Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bad breath gas sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3402 KiB  
Article
Application of Ba0.5Sr0.5TiO3 (Bst) Film Doped with 0%, 2%, 4% and 6% Concentrations of RuO2 as an Arduino Nano-Based Bad Breath Sensor
by Irzaman, Ridwan Siskandar, Brian Yuliarto, Mochammad Zakki Fahmi and Ferdiansjah
Chemosensors 2020, 8(1), 3; https://doi.org/10.3390/chemosensors8010003 - 25 Dec 2019
Cited by 7 | Viewed by 3915
Abstract
Ba0.5Sr0.5TiO3 (BST) film doped with variations in RuO2 concentration (0%, 2%, 4%, and 6%) has been successfully grown on a type-p silicon substrate (100) using the chemical solution deposition (CSD) method and spin-coating at a speed of [...] Read more.
Ba0.5Sr0.5TiO3 (BST) film doped with variations in RuO2 concentration (0%, 2%, 4%, and 6%) has been successfully grown on a type-p silicon substrate (100) using the chemical solution deposition (CSD) method and spin-coating at a speed of 3000 rpm for 30 s. The film on the substrate was then heated at 850 °C for 15 h. The sensitivity of BST film + RuO2 variations as a gas sensor were characterized. The sensitivity characterization was assisted by various electronic circuitry with the purpose of producing a sensor that is very sensitive to gas. The responses from the BST film + RuO2 variation were varied, depending on the concentration of the RuO2 dope. BST film doped with 6% RuO2 had a very good response to halitosis gases; therefore, this film was applied as the Arduino-Nano-based bad-breath detecting sensor. Before it was integrated with the microcontroller, the voltage output of the BST film was amplified using an op-amp circuit to make the voltage output from the BST film readable to the microcontroller. The changes in the voltage response were then shown on the prototype display. If the voltage output was ≤12.9 mV, the display would read “bad breath”. If the voltage output >42.1 mV, the display would read “fragrant”. If 12.9 mV < voltage output ≤ 42.1 mV, the display would read “normal”. Full article
(This article belongs to the Special Issue Thin Film Based Sensors II)
Show Figures

Figure 1

7 pages, 2550 KiB  
Article
A Miniaturized Amperometric Hydrogen Sulfide Sensor Applicable for Bad Breath Monitoring
by Hithesh K. Gatty, Göran Stemme and Niclas Roxhed
Micromachines 2018, 9(12), 612; https://doi.org/10.3390/mi9120612 - 22 Nov 2018
Cited by 15 | Viewed by 5012
Abstract
Bad breath or halitosis affects a majority of the population from time to time, causing personal discomfort and social embarrassment. Here, we report on a miniaturized, microelectromechanical systems (MEMS)-based, amperometric hydrogen sulfide (H2S) sensor that potentially allows bad breath quantification through [...] Read more.
Bad breath or halitosis affects a majority of the population from time to time, causing personal discomfort and social embarrassment. Here, we report on a miniaturized, microelectromechanical systems (MEMS)-based, amperometric hydrogen sulfide (H2S) sensor that potentially allows bad breath quantification through a small handheld device. The sensor is designed to detect H2S gas in the order of parts-per-billion (ppb) and has a measured sensitivity of 0.65 nA/ppb with a response time of 21 s. The sensor was found to be selective to NO and NH3 gases, which are normally present in the oral breath of adults. The ppb-level detection capability of the integrated sensor, combined with its relatively fast response and high sensitivity to H2S, makes the sensor potentially applicable for oral breath monitoring. Full article
(This article belongs to the Special Issue Nanostructure Based Sensors for Gas Sensing: from Devices to Systems)
Show Figures

Figure 1

Back to TopTop