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Abstract: Bad breath or halitosis affects a majority of the population from time to time,
causing personal discomfort and social embarrassment. Here, we report on a miniaturized,
microelectromechanical systems (MEMS)-based, amperometric hydrogen sulfide (H2S) sensor that
potentially allows bad breath quantification through a small handheld device. The sensor is designed
to detect H2S gas in the order of parts-per-billion (ppb) and has a measured sensitivity of 0.65 nA/ppb
with a response time of 21 s. The sensor was found to be selective to NO and NH3 gases, which are
normally present in the oral breath of adults. The ppb-level detection capability of the integrated
sensor, combined with its relatively fast response and high sensitivity to H2S, makes the sensor
potentially applicable for oral breath monitoring.
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1. Introduction

Bad breath or oral malodor, affects a majority of the population on a regular basis. The presence
of plaque, tongue coating [1], gum diseases [2], exposed necrotic tooth pulp, and healing wounds [3]
are known to be the cause of oral malodor. Microorganisms present in oral cavities react with
organic compounds, releasing sulfur-containing by-products that lead to bad breath. Specifically,
sulfur-containing by-products, such as hydrogen sulfide (H2S), methyl mercaptan (CH4S), and
dimethyl sulfide ((CH3)2S), are associated with bad breath, which is also termed as halitosis [4].

Until recently, oral malodor was diagnosed by physicians in a purely subjective manner (smelling).
However, recent developments in sensor technology have provided measuring instruments with
sensitive detection of bad breath. The most successful commercial measuring instrument is the
Halimeter™ [5], a standard clinical bench-top instrument used to measure volatile sulfur compounds
(VSCs), particularly H2S gas concentration. In this instrument, the user blows into a tube attached to
the instrument and a concentration value is presented on a display. Halitosis in an adult is classified
as “normal” if the concentration is within the range of 80–160 parts-per-billion (ppb), “weak” if the
concentration is within the range of 160–250 ppb, and “strong” if the concentration is greater than
250 ppb [6,7]. The disadvantage of the Halimeter instrument is that it is a bench-top apparatus (3.6 kg)
that requires warm-up times and yearly maintenance [8] and is thus an instrument that is primarily
designed for patient examination or population studies. However, to more directly address and
counteract personal discomfort, ad-hoc mobile monitoring of bad breath would be highly desired.
To achieve such monitoring, the sensor element is essential, which requires a small form factor for
integration, a fast response time, and ppb-level sensitivity.

Among the various types of H2S sensors developed, amperometric sensors are particularly
advantageous as it allows the fabrication of miniaturized and high sensitivity sensors with fast
response time. Schiavon and Zotti achieved detection limits of 45 ppb using discrete porous silver
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electrodes supported on separate ion-exchange membranes [9]. However, nonintegrated discrete
components result in relatively large-size sensors, which is undesirable when developing a handheld
instrument. Recently, Yang et al. showed a fast response Nafion-based amperometric sensor that could
detect H2S in the range of 0.1–200 ppm [10]. However, a complex fabrication method of the sensing
electrode and lower sensitivity limits the sensor from being used in the ppb range, which is required
for bad breath detection.

In the present work, a miniaturized and integrated electrochemical H2S sensor with fast response
time and a ppb-level sensitivity that is applicable for Halitosis measurement is demonstrated. A simple
fabrication method involving high aspect ratio etching and atomic layer deposition of platinum
provides the basic structure for preparation of the sensing electrode. The sensor was characterized
for its cross sensitivity to nitric oxide (NO), which is normally present in the oral cavity and nasal
cavity. Nasal cavity NO contributes to the high concentration in the oral cavity and can affect the
NO concentration in the oral cavity. A typical concentration of NO in the nasal cavity is in the range
of 0–900 ppb [11], while it is in the range of 20–100 ppb in the oral cavity. In addition, the sensor
was characterized with ammonia (NH3) gas, which is present in the oral cavity in the range of
0–450 ppb [12].

2. Sensor Design and Measurement Method

The sensor design is based on the principle of amperometric detection of H2S gas. The working,
reference, and counter electrodes, together with the electrolyte, constitute the basic elements of the
sensor. Particularly in the present design, the working electrode consists of a nanostructured Nafion™
(Chemours, Wilmington, DE, USA) coating that in turn is leveraged through a microporous high aspect
ratio structure. The interaction between this large-area working electrode, the gas, and the electrolyte
(5% H2SO4) under electrical bias leads to the oxidation of H2S gas at the surface of the electrode,
causing a current flow between the working and the counter electrodes. The working electrode current
is then measured using a potentiostat, maintaining a constant voltage of +1.1 V with respect to the
reference electrode. Figure 1a shows the schematic cross section of the sensor design, and Figure 1b
shows the photograph of a bare die of the sensor with a dimension of 10 mm × 10 mm × 1 mm.
The design, fabrication, and assembly of the sensor have been described in our previous work [13].
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Figure 1. (a) Schematic cross section of the sensor design indicating the high aspect ratio micropores 
with a nanostructured porous Nafion™ layer. (b) Photograph of the amperometric sensor with the 
porous structure in the middle (dark area). Inset: SEM image shows the microporous grid structure 
of the working electrode. The working electrode of the sensor is fabricated by deep reactive ion 
etching and platinum atomic layer deposition of a silicon on insulator (SOI) wafer, and the counter 
and reference electrodes are fabricated on a glass wafer, which is then assembled together by anodic 
bonding [13]. The sensor has a footprint area of 10 × 10 mm2 and a thickness of approximately 1 mm. 

Figure 1. (a) Schematic cross section of the sensor design indicating the high aspect ratio micropores
with a nanostructured porous Nafion™ layer. (b) Photograph of the amperometric sensor with the
porous structure in the middle (dark area). Inset: SEM image shows the microporous grid structure
of the working electrode. The working electrode of the sensor is fabricated by deep reactive ion
etching and platinum atomic layer deposition of a silicon on insulator (SOI) wafer, and the counter
and reference electrodes are fabricated on a glass wafer, which is then assembled together by anodic
bonding [13]. The sensor has a footprint area of 10 × 10 mm2 and a thickness of approximately 1 mm.
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In order to test the sensor for different gases and gas concentrations, a measurement set-up was
built as illustrated in Figure 2. In this set-up, a 10 ppm H2S in N2 gas (AGA gas AB, Lidingö, Sweden)
was mixed with a pure N2 gas (99.95% pure, AGA gas AB, Lidingö, Sweden) to obtain the desired
concentration. A scrubber (Dräger, type 1140, Lidingö, Sweden) was used to remove potential residues
in the N2 gas. To measure the selectivity of the sensor to interfering gases, 200 ppb NO in N2 gas
(AGA gas AB, Lidingö, Sweden) and 45 ppm of NH3 in N2 gas (AGA gas AB, Lidingö, Sweden) were
used. In order to humidify the gas mixture, a custom-made humidifier consisting of a syringe with
moistened paper was used. A mechanical sealing module was further used to reduce evaporation
of the electrolyte. Further details on the measurement set-up used for sensor characterization can be
found in our previous work [13].
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Figure 2. Schematic illustration of the measurement set-up used for characterization of the H2S
amperometric sensor. Data from the flow sensors, the temperature sensor, and the humidity sensor
were accessed using a LabVIEW ™ (National Instruments, Austin, TX, USA) program.

3. Results and Discussion

The sensor was tested for its H2S gas sensitivity, selectivity to NO and NH3, and response time.
A gas flow of 550 mL/min and 50% relative humidity (RH) was maintained for all measurements.

3.1. Sensitivity

In order to determine the sensitivity of the sensor, the H2S concentration was varied in five steps
of 75, 150, 250, 500, and 820 ppb. Three such variations were carried out using the measurement
set-up. The output current from each concentration was determined by calculating the difference
between the working electrode current at t90 (cf. Figure 5) and the working electrode current at zero
H2S concentration. The output currents and the linear fitting for five different H2S gas concentrations
are plotted in Figure 3. Based on the linear fit, the maximum sensitivity of the sensor was calculated to
be 0.65 nA/ppb. The sensor detects H2S gas in the lower limit of 75 ppb and a higher limit of 820 ppb
and is within the range required for monitoring the oral breath. The lower limit concentration of
75 ppb was measured without being affected by the noise in the system.

The sensitivity graph of commercial H2S sensors as compared to the designed integrated sensor
is shown in Figure 4. In order to maintain a fair comparison, the area of the working electrode is
normalized to the sensitivity, i.e., 0.65 nA/ppb is obtained for a footprint area of 25 mm2 arriving
at a normalized sensitivity of 2700 nA/ppm/cm2. The integrated H2S sensor has a measured area
normalized sensitivity that is approximately 2.5 times more than the sensitivities of commercial sensors.
This shows a potential for the integrated sensor to be fabricated with a smaller footprint area with a
reduced sensitivity in order to realize a smaller sensor, leading to a miniaturized handheld instrument.
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3.2. Selectivity to NO and NH3

To obtain the selectivity to NO gas, the output current was measured at 200 ppb NO gas
concentration, and the NO sensitivity was calculated to be approximately 0.04 nA/ppb, which is
in agreement with our earlier fabricated prototype [13,14]. The selectivity can be defined as the ratio
of H2S sensitivity to NO sensitivity and is calculated to be approximately 16. NO concentration of
approximately 900 ppb is commonly found in the nasal cavity that can affect the oral breath [11].
However, a concentration of 900 ppb of NO results in an equivalent H2S concentration of 55 ppb,
which is within a normal halitosis range. Therefore, the NO contamination from the nasal cavity
has negligible effect on the H2S concentration from the oral breath. The selectivity of the sensor to
NO could be further increased by reducing the nasal NO contamination from the oral cavity either
by breath maneuver or by clamping the nostrils while measuring H2S concentration from the oral
cavity. Other sources of NO release, such as lungs and oral cavity, can be neglected due to a low NO
concentration (20–100 ppb), which is likely to have a minimal interference with H2S detection.

The output current of the sensor to 45 ppm NH3 gas concentration was found to be below the
detection limit. Therefore, the sensor will not be sensitive to NH3 gas present in the oral cavity.
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3.3. Response Time

The response time of the sensor to a 250 ppb H2S concentration was estimated by measuring
the rise time (t90) of the sensor, i.e., the time required to reach 90% of the maximum output current.
The response time of the sensor was measured to be 21 s, as shown in Figure 5. A thorough investigation
of the method of oral breath sampling to capture the H2S gas concentration at a constant rate that
could be correlated to the sensor response time has not yet been reported. However, Tangerman et al.
collected a sample of oral breath by breathing into a syringe for 5–10 s. The sample was then used for
H2S concentration detection [15]. The recommended procedure for Halimeter instrument includes an
initial three-minute period during which the patient breathes through the nose with lips sealed. A pipe
attached to the instrument is then inserted into the partially opened mouth, and a pump withdraws
gas from the oral cavity for concentration measurement [16,17]. It is conceivable that an oral breathing
in the range of 20–30 s could be considered for H2S concentration measurement.
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In order to assess the response time of the integrated sensor, a comparison graph with commercial
H2S sensors is shown in Figure 6. The response time (t90) of 21 s is comparatively better than most of
the currently available commercial sensors. In order to have a real-time measurement, the response
time can be further decreased by optimization of the sensor design.
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3.4. Working Electrode Current Drift

The response of the sensor to five different concentrations is shown in Figure 7. The graph shows
a background current drift of 0.675 nA/min, which is equivalent to approximately 1 ppb/min of H2S
concentration drift. Therefore, for a response time of 21 s, the drift component is approximately 0.3 ppb,
which is negligibly small. Hence, an accurate measurement of H2S concentration can be deducted
from the output current.

3.5. Halitosis Measurement Range

Figure 7 shows the working electrode current for five different steps of H2S gas concentration.
The sensor can measure the H2S concentration in the region of normal, weak, and strong halitosis
that is required for monitoring the oral health. Consequently, the sensor can be applied to detect the
entire dynamic range of H2S concentration present in the oral breath. In addition, the sensor could
be useful in dental clinics for follow-up measurement of the halitosis content before and after oral
dental treatment.
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the entire dynamic range of H2S concentration that could be correlated to the concentration present in
the oral breath. The background current of the sensor could be due to the interference from humidity
or due to high conductivity of the electrolyte.

4. Conclusions

In this paper, an integrated amperometric sensor has been evaluated for the detection of
hydrogen sulfide (H2S) concentration present in the oral breath. The sensitivity of the sensor is
measured to be 0.65nA/ppb with a response time of approximately 21 s, which is comparatively better
than commercially available sensors. The sensor can be applied to measure bad breath where the
concentration of H2S gas indicates a malodor in the breath. The entire range of H2S gas concentration
present in the oral breath can be diagnosed by the sensor. For more complete measurements, detection
of methyl mercaptan (CH4S) and dimethyl sulfide (CH3)2S concentration in combination with H2S
concentration will give a more comprehensive representation of oral health. Overall, a prototype has
been realized to measure H2S gas concentration that is relevant for bad breath monitoring.
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