Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = bacterial- and viral-induced host biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1175 KiB  
Article
Fecal Microbiota Changes in Angus Beef Cows Persistently Infected by Bovine Viral Diarrhea Virus
by Ruiyang Xia, Yalu Chen, Pengfei Yi, Yawei Sun, Lijing Chen, Xuelian Ma, Qi Zhong, Na Li and Gang Yao
Vet. Sci. 2025, 12(6), 538; https://doi.org/10.3390/vetsci12060538 - 2 Jun 2025
Viewed by 538
Abstract
Bovine viral diarrhea virus (BVDV) remains a major cause of calf diarrhea with substantial economic impacts on global cattle production. While emerging evidence suggests that the host microbiota may modulate viral infection processes, the specific gut microbial alterations induced by BVDV infection require [...] Read more.
Bovine viral diarrhea virus (BVDV) remains a major cause of calf diarrhea with substantial economic impacts on global cattle production. While emerging evidence suggests that the host microbiota may modulate viral infection processes, the specific gut microbial alterations induced by BVDV infection require elucidation. This study investigated gut microbiota composition and functional changes in BVDV-infected cows through 16S rRNA sequencing. Following the epidemiological screening of a large Angus cattle herd using RT-PCR, we identified four persistently infected (PI) animals and four BVDV-negative controls. Fecal analysis revealed Firmicutes and Bacteroidetes as dominant phyla in both groups. A significant increase in the Ruminococcus genus was observed in PI cows (p < 0.05), with LEfSe analysis identifying Paludibacter as a BVDV-associated biomarker. The PI group exhibited reduced alpha diversity (Faith’s PD index, p < 0.05) and elevated histidine metabolism pathway abundance compared to controls (p < 0.05). These findings demonstrate that persistent BVDV infection induces structural and functional modifications in the bovine gut microbiota, particularly through the enrichment of specific bacterial taxa and altered metabolic potential. The results provide new insights into virus–microbiota interactions, establishing a foundation for understanding how BVDV infection may influence host physiology through microbial community changes. Full article
Show Figures

Figure 1

19 pages, 2200 KiB  
Article
Performance Evaluation of Host Biomarker Combinations for the Diagnosis of Serious Bacterial Infection in Young Febrile Children: A Double-Blind, Multicentre, Observational Study
by Aurélie Portefaix, Sylvie Pons, Antoine Ouziel, Romain Basmaci, Philippe Rebaud, Marie-Caroline Delafay, Laurence Generenaz, Guy Oriol, Boris Meunier, Fatima Abbas-Chorfa, Sophie Trouillet-Assant, Tiphanie Ginhoux, Fabien Subtil, Yves Gillet, Karen Brengel-Pesce and Etienne Javouhey
J. Clin. Med. 2022, 11(21), 6563; https://doi.org/10.3390/jcm11216563 - 4 Nov 2022
Cited by 3 | Viewed by 2918
Abstract
The diagnosis of serious bacterial infection (SBI) in young febrile children remains challenging. This prospective, multicentre, observational study aimed to identify new protein marker combinations that can differentiate a bacterial infection from a viral infection in 983 children, aged 7 days–36 months, presenting [...] Read more.
The diagnosis of serious bacterial infection (SBI) in young febrile children remains challenging. This prospective, multicentre, observational study aimed to identify new protein marker combinations that can differentiate a bacterial infection from a viral infection in 983 children, aged 7 days–36 months, presenting with a suspected SBI at three French paediatric emergency departments. The blood levels of seven protein markers (CRP, PCT, IL-6, NGAL, MxA, TRAIL, IP-10) were measured at enrolment. The patients received the standard of care, blinded to the biomarker results. An independent adjudication committee assigned a bacterial vs. viral infection diagnosis based on clinical data, blinded to the biomarker results. Computational modelling was applied to the blood levels of the biomarkers using independent training and validation cohorts. Model performances (area under the curve (AUC), positive and negative likelihood ratios (LR+ and LR–)) were calculated and compared to those of the routine biomarkers CRP and PCT. The targeted performance for added value over CRP or PCT was LR+ ≥ 5.67 and LR− ≤ 0.5. Out of 652 analysed patients, several marker combinations outperformed CRP and PCT, although none achieved the targeted performance criteria in the 7 days–36 months population. The models seemed to perform better in younger (7–91 day-old) patients, with the CRP/MxA/TRAIL combination performing best (AUC 0.895, LR+ 10.46, LR− 0.16). Although computational modelling using combinations of bacterial- and viral-induced host-protein markers is promising, further optimisation is necessary to improve SBI diagnosis in young febrile children. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

14 pages, 633 KiB  
Commentary
Immunomodulatory Potential of Non-Classical HLA-G in Infections including COVID-19 and Parasitic Diseases
by Sajad Rashidi, Carmen Vieira, Renu Tuteja, Reza Mansouri, Mohammad Ali-Hassanzadeh, Antonio Muro, Paul Nguewa and Raúl Manzano-Román
Biomolecules 2022, 12(2), 257; https://doi.org/10.3390/biom12020257 - 4 Feb 2022
Cited by 5 | Viewed by 3366
Abstract
Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its [...] Read more.
Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its polymorphism seem to be related to different pathological conditions, potentially acting as a disease progression biomarker. Pathogen antigens might be involved in the regulation of both membrane-bound and sHLA-G levels and impact immune responses during co-infections. The upregulation of HLA-G in viral and bacterial infections induce tolerance to infection. Recently, sHLA-G was found useful to identify the prognosis of Coronavirus disease 2019 (COVID-19) among patients and it was observed that the high levels of sHLA-G are associated with worse prognosis. The use of pathogens, such as Plasmodium falciparum, as immune modulators for other infections could be extended for the modulation of membrane-bound HLA-G in COVID-19-infected tissues. Overall, such information might open new avenues concerning the effect of some pathogens such as parasites in decreasing the expression level of HLA-G to restrict pathogenesis in some infections or to influence the immune responses after vaccination among others. Full article
Show Figures

Figure 1

10 pages, 279 KiB  
Review
Novel Biomarkers Differentiating Viral from Bacterial Infection in Febrile Children: Future Perspectives for Management in Clinical Praxis
by Samuel Rhedin, Kristina Elfving and Anna Berggren
Children 2021, 8(11), 1070; https://doi.org/10.3390/children8111070 - 20 Nov 2021
Cited by 14 | Viewed by 5094
Abstract
Differentiating viral from bacterial infections in febrile children is challenging and often leads to an unnecessary use of antibiotics. There is a great need for more accurate diagnostic tools. New molecular methods have improved the particular diagnostics of viral respiratory tract infections, but [...] Read more.
Differentiating viral from bacterial infections in febrile children is challenging and often leads to an unnecessary use of antibiotics. There is a great need for more accurate diagnostic tools. New molecular methods have improved the particular diagnostics of viral respiratory tract infections, but defining etiology can still be challenging, as certain viruses are frequently detected in asymptomatic children. For the detection of bacterial infections, time consuming cultures with limited sensitivity are still the gold standard. As a response to infection, the immune system elicits a cascade of events, which aims to eliminate the invading pathogen. Recent studies have focused on these host–pathogen interactions to identify pathogen-specific biomarkers (gene expression profiles), or “pathogen signatures”, as potential future diagnostic tools. Other studies have assessed combinations of traditional bacterial and viral biomarkers (C-reactive protein, interleukins, myxovirus resistance protein A, procalcitonin, tumor necrosis factor-related apoptosis-inducing ligand) to establish etiology. In this review we discuss the performance of such novel diagnostics and their potential role in clinical praxis. In conclusion, there are several promising novel biomarkers in the pipeline, but well-designed randomized controlled trials are needed to evaluate the safety of using these novel biomarkers to guide clinical decisions. Full article
(This article belongs to the Special Issue Advances in Pediatric Infection and Immunity)
15 pages, 764 KiB  
Review
Epigenetic Mechanisms of Inflammasome Regulation
by Giulia Poli, Consuelo Fabi, Marina Maria Bellet, Claudio Costantini, Luisa Nunziangeli, Luigina Romani and Stefano Brancorsini
Int. J. Mol. Sci. 2020, 21(16), 5758; https://doi.org/10.3390/ijms21165758 - 11 Aug 2020
Cited by 63 | Viewed by 6992
Abstract
The innate immune system represents the host’s first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating [...] Read more.
The innate immune system represents the host’s first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways. Full article
(This article belongs to the Special Issue Inflammasome)
Show Figures

Figure 1

9 pages, 223 KiB  
Review
Biomarkers in Pediatric Community-Acquired Pneumonia
by Nicola Principi and Susanna Esposito
Int. J. Mol. Sci. 2017, 18(2), 447; https://doi.org/10.3390/ijms18020447 - 19 Feb 2017
Cited by 77 | Viewed by 10570
Abstract
Community-acquired pneumonia (CAP) is an infectious disease caused by bacteria, viruses, or a combination of these infectious agents. The severity of the clinical manifestations of CAP varies significantly. Consequently, both the differentiation of viral from bacterial CAP cases and the accurate assessment and [...] Read more.
Community-acquired pneumonia (CAP) is an infectious disease caused by bacteria, viruses, or a combination of these infectious agents. The severity of the clinical manifestations of CAP varies significantly. Consequently, both the differentiation of viral from bacterial CAP cases and the accurate assessment and prediction of disease severity are critical for effectively managing individuals with CAP. To solve questionable cases, several biomarkers indicating the etiology and severity of CAP have been studied. Unfortunately, only a few studies have examined the roles of these biomarkers in pediatric practice. The main aim of this paper is to detail current knowledge regarding the use of biomarkers to diagnose and treat CAP in children, analyzing the most recently published relevant studies. Despite several attempts, the etiologic diagnosis of pediatric CAP and the estimation of the potential outcome remain unsolved problems in most cases. Among traditional biomarkers, procalcitonin (PCT) appears to be the most effective for both selecting bacterial cases and evaluating the severity. However, a precise cut-off separating bacterial from viral and mild from severe cases has not been defined. The three-host protein assay based on C-reactive protein (CRP), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), plasma interferon-γ protein-10 (IP-10), and micro-array-based whole genome expression arrays might offer more advantages in comparison with former biomarkers. However, further studies are needed before the routine use of those presently in development can be recommended. Full article
(This article belongs to the Special Issue Pneumonia: Pathogenesis, Diagnostics, Therapeutics, and Prevention)
Back to TopTop