Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = backscatter (σ°) variance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3434 KiB  
Article
Retrieval of Surface Soil Moisture over Wheat Fields during Growing Season Using C-Band Polarimetric SAR Data
by Kalifa Goïta, Ramata Magagi, Vincent Beauregard and Hongquan Wang
Remote Sens. 2023, 15(20), 4925; https://doi.org/10.3390/rs15204925 - 12 Oct 2023
Cited by 2 | Viewed by 1991
Abstract
Accurate estimation and regular monitoring of soil moisture is very important for many agricultural, hydrological, or climatological applications. Our objective was to evaluate potential contributions of polarimetry to soil moisture estimation during crop growing cycles using RADARSAT-2 C-band images. The research focused on [...] Read more.
Accurate estimation and regular monitoring of soil moisture is very important for many agricultural, hydrological, or climatological applications. Our objective was to evaluate potential contributions of polarimetry to soil moisture estimation during crop growing cycles using RADARSAT-2 C-band images. The research focused on wheat field data collected during Soil Moisture Active Passive Validation Experiment (SMAPVEX12) conducted in 2012 in Manitoba (Canada). A sensitivity analysis was performed to select the most relevant non-polarimetric and polarimetric variables extracted from RADARSAT-2, and statistical models were developed to estimate soil moisture. In fine, three models were developed and validated: a non-polarimetric model based on cross-polarized backscattering coefficient σHV0; a polarimetric mixed model using six polarimetric and non-polarimetric retained variables after the sensitivity analysis; and a simplified polarimetric mixed model considering only the phase difference (ϕHHVV) and the co-polarized backscattering coefficient σHH0. The validation reveals significant positive contributions of polarimetry. It shows that the non-polarimetric model has a much larger error (RMSE = 0.098 m3/m3) and explains only 19% of observed soil moisture variation compared to the polarimetric mixed model, which has an error of 0.087 m3/m3, with an explained variance of 44%. The simplified model has the lowest error (0.074 m3/m3) and explains 53.5% of soil moisture variation. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Graphical abstract

21 pages, 15505 KiB  
Article
Block-Greedy and CNN Based Underwater Image Dehazing for Novel Depth Estimation and Optimal Ambient Light
by Fayadh Alenezi, Ammar Armghan, Sachi Nandan Mohanty, Rutvij H. Jhaveri and Prayag Tiwari
Water 2021, 13(23), 3470; https://doi.org/10.3390/w13233470 - 6 Dec 2021
Cited by 63 | Viewed by 4781
Abstract
A lack of adequate consideration of underwater image enhancement gives room for more research into the field. The global background light has not been adequately addressed amid the presence of backscattering. This paper presents a technique based on pixel differences between global and [...] Read more.
A lack of adequate consideration of underwater image enhancement gives room for more research into the field. The global background light has not been adequately addressed amid the presence of backscattering. This paper presents a technique based on pixel differences between global and local patches in scene depth estimation. The pixel variance is based on green and red, green and blue, and red and blue channels besides the absolute mean intensity functions. The global background light is extracted based on a moving average of the impact of suspended light and the brightest pixels within the image color channels. We introduce the block-greedy algorithm in a novel Convolutional Neural Network (CNN) proposed to normalize different color channels’ attenuation ratios and select regions with the lowest variance. We address the discontinuity associated with underwater images by transforming both local and global pixel values. We minimize energy in the proposed CNN via a novel Markov random field to smooth edges and improve the final underwater image features. A comparison of the performance of the proposed technique against existing state-of-the-art algorithms using entropy, Underwater Color Image Quality Evaluation (UCIQE), Underwater Image Quality Measure (UIQM), Underwater Image Colorfulness Measure (UICM), and Underwater Image Sharpness Measure (UISM) indicate better performance of the proposed approach in terms of average and consistency. As it concerns to averagely, UICM has higher values in the technique than the reference methods, which explainsits higher color balance. The μ values of UCIQE, UISM, and UICM of the proposed method supersede those of the existing techniques. The proposed noted a percent improvement of 0.4%, 4.8%, 9.7%, 5.1% and 7.2% in entropy, UCIQE, UIQM, UICM and UISM respectively compared to the best existing techniques. Consequently, dehazed images have sharp, colorful, and clear features in most images when compared to those resulting from the existing state-of-the-art methods. Stable σ values explain the consistency in visual analysis in terms of sharpness of color and clarity of features in most of the proposed image results when compared with reference methods. Our own assessment shows that only weakness of the proposed technique is that it only applies to underwater images. Future research could seek to establish edge strengthening without color saturation enhancement. Full article
(This article belongs to the Special Issue AI and Deep Learning Applications for Water Management)
Show Figures

Figure 1

17 pages, 6039 KiB  
Article
Snow Thickness Estimation on First-Year Sea Ice from Late Winter Spaceborne Scatterometer Backscatter Variance
by John Yackel, Torsten Geldsetzer, Mallik Mahmud, Vishnu Nandan, Stephen E. L. Howell, Randall K. Scharien and Hoi Ming Lam
Remote Sens. 2019, 11(4), 417; https://doi.org/10.3390/rs11040417 - 18 Feb 2019
Cited by 16 | Viewed by 5388
Abstract
Ku- and C-band spaceborne scatterometer sigma nought (σ°) backscatter data of snow covered landfast first-year sea ice from the Canadian Arctic Archipelago are acquired during the winter season with coincident in situ snow-thickness observations. Our objective is to describe a methodological framework for [...] Read more.
Ku- and C-band spaceborne scatterometer sigma nought (σ°) backscatter data of snow covered landfast first-year sea ice from the Canadian Arctic Archipelago are acquired during the winter season with coincident in situ snow-thickness observations. Our objective is to describe a methodological framework for estimating relative snow thickness on first-year sea ice based on the variance in σ° from daily time series ASCAT and QuikSCAT scatterometer measurements during the late winter season prior to melt onset. We first describe our theoretical basis for this approach, including assumptions and conditions under which the method is ideally suited and then present observational evidence from four independent case studies to support our hypothesis. Results suggest that the approach can provide a relative measure of snow thickness prior to σ° detected melt onset at both Ku- and C-band frequencies. We observe that, during the late winter season, a thinner snow cover displays a larger variance in daily σ° compared to a thicker snow cover on first-year sea ice. This is because for a given increase in air temperature, a thinner snow cover manifests a larger increase in basal snow layer brine volume owing to its higher thermal conductivity, a larger increase in the dielectric constant and a larger increase in σ° at both Ku- and C bands. The approach does not apply when snow thickness distributions on first-year sea ice being compared are statistically similar, indicating that similar late winter σ° variances likely indicate regions of similar snow thickness. Full article
Show Figures

Graphical abstract

29 pages, 2585 KiB  
Article
Monitoring Wetlands Ecosystems Using ALOS PALSAR (L-Band, HV) Supplemented by Optical Data: A Case Study of Biebrza Wetlands in Northeast Poland
by Katarzyna Dabrowska-Zielinska, Maria Budzynska, Monika Tomaszewska, Maciej Bartold, Martyna Gatkowska, Iwona Malek, Konrad Turlej and Milena Napiorkowska
Remote Sens. 2014, 6(2), 1605-1633; https://doi.org/10.3390/rs6021605 - 20 Feb 2014
Cited by 41 | Viewed by 10308
Abstract
The aim of the study was to elaborate the remote sensing methods for monitoring wetlands ecosystems. The investigation was carried out during the years 2002–2010 in the Biebrza Wetlands. The meteorological conditions at the test site varied from extremely dry to very wet. [...] Read more.
The aim of the study was to elaborate the remote sensing methods for monitoring wetlands ecosystems. The investigation was carried out during the years 2002–2010 in the Biebrza Wetlands. The meteorological conditions at the test site varied from extremely dry to very wet. The authors propose applying satellite remote sensing data acquired in the optical and microwave spectrums to classify wetlands vegetation habitats for the assessment of vegetation changes and estimation of wetlands’ biophysical properties to improve monitoring of these unique, very often physically impenetrable, areas. The backscattering coefficients (σ°) calculated from ALOS PALSAR FBD (Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar, Fine Beam Dual Mode) images registered at cross polarization HV on 12 May 2008 were used to classify the main wetland communities using ground truth observations and the visual interpretation method. As a result, the σ° values were distributed among the six wetlands’ vegetation classes: scrubs, sedges-scrubs, sedges, reeds, sedges-reeds, rushes, and the areas of each community and changes were assessed. Also, the change in the biophysical variable as Leaf Area Index (LAI) is described using the information from PALSAR data. Strong linear relationships have been found between LAI and σ° derived for particular wetland classes, which then were applied to elaborate the maps of LAI distribution. The other variables used to characterize the changing environmental conditions are: surface temperature (Ts) calculated from NOAA AVHRR (National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer) and Normalized Difference Vegetation Index (NDVI) from ENVISAT MERIS (ENVIronmental SATellite MEdium Resolution Imaging Spectrometer). Differences of almost double Ts between “dry” and “wet” years were noticed that reflect observed weather conditions. The highest values of NDVI occurred in years with a sufficient amount of precipitation with the lowest in “dry” years. NDVI values variances within the same wetlands class resulted mainly from the differences in soil moisture. The results of this study show that the satellite data from microwave and optical spectrum gave the repetitive spatial information about vegetation growth conditions and could be used for monitoring wetland ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing of Peatlands I)
Show Figures

Back to TopTop