Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = bacillus subtilis ATCC 21332

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4075 KB  
Article
Fouling Analysis in One-Stage Ultrafiltration of Precipitation-Treated Bacillus subtilis Fermentation Liquors for Biosurfactant Recovery
by Mai Lien Tran, Ying-Shr Chen and Ruey-Shin Juang
Membranes 2022, 12(11), 1057; https://doi.org/10.3390/membranes12111057 - 28 Oct 2022
Cited by 10 | Viewed by 2180
Abstract
Primary recovery of surfactin from precipitation-pretreated fermentation broths of Bacillus subtilis ATCC 21332 culture by one-stage dead-end and cross-flow ultrafiltration (UF) was studied. Dead-end experiments were first performed to select suitable conditions, including the amount of added ethanol—a micelle-destabilizing solvent (0–70 vol%), type [...] Read more.
Primary recovery of surfactin from precipitation-pretreated fermentation broths of Bacillus subtilis ATCC 21332 culture by one-stage dead-end and cross-flow ultrafiltration (UF) was studied. Dead-end experiments were first performed to select suitable conditions, including the amount of added ethanol—a micelle-destabilizing solvent (0–70 vol%), type (polyethersulfone, polyacrylonitrile, poly(vinylidene fluoride)) and molecular-weight cut-off (MWCO, 30–100 kDa) of the membrane in the surfactin concentration range of 0.25–1.23 g/L. Then, the cross-flow UF experiments were conducted to check the recovery performance in the ranges of feed surfactin concentration of 1.13–2.67 g/L, flow velocity of 0.025–0.05 m/s, and transmembrane pressure of 40–100 kPa. The Hermia model was also used to clarify membrane fouling mechanisms. Finally, three cleaning agents and two in situ cleaning ways (flush and back-flush) were selected to regain the permeate flux. As for the primary recovery of surfactin from the permeate in cross-flow UF, a polyethersulfone membrane with 100-kDa MWCO was suggested, and the NaOH solution at pH 11 was used for membrane flushing. Full article
Show Figures

Graphical abstract

13 pages, 2297 KB  
Article
Multi-Scale Biosurfactant Production by Bacillus subtilis Using Tuna Fish Waste as Substrate
by Jiheng Hu, Jie Luo, Zhiwen Zhu, Bing Chen, Xudong Ye, Peng Zhu and Baiyu Zhang
Catalysts 2021, 11(4), 456; https://doi.org/10.3390/catal11040456 - 1 Apr 2021
Cited by 30 | Viewed by 5392
Abstract
As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste [...] Read more.
As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste materials as low-cost substrates for the growth of biosurfactant producers has emerged as a feasible solution for economical biosurfactant production. In this study, fish peptone was generated through enzyme hydrolyzation of smashed tuna (Katsuwonus pelamis). Biosurfactant (mainly surfactin) production by Bacillus subtilis ATCC 21332 was further evaluated and optimized using the generated fish peptone as a comprehensive substrate. The optimized production conduction was continuously assessed in a 7 L batch-scale and 100 L pilot-scale fermenter, exploring the possibility for a large-scale surfactin production. The results showed that Bacillus subtilis ATCC 21332 could effectively use the fish waste peptones for surfactin production. The highest surfactin productivity achieved in the pilot-scale experiments was 274 mg/L. The experimental results shed light on the further production of surfactins at scales using fish wastes as an economical substrate. Full article
(This article belongs to the Special Issue Biocatalysts and Their Environmental Applications)
Show Figures

Figure 1

11 pages, 1262 KB  
Article
Mg-Fe Layered Double Hydroxides Enhance Surfactin Production in Bacterial Cells
by Pei-Hsin Chang, Si-Yu Li, Tzong-Yuan Juang and Yung-Chuan Liu
Crystals 2019, 9(7), 355; https://doi.org/10.3390/cryst9070355 - 12 Jul 2019
Cited by 4 | Viewed by 3756
Abstract
In this study, four additives—montmorillonite, activated carbon, and the layered double hydroxides (LDHs), Mg2Fe–LDH and Mg2Al–LDH—were tested for their ability to promote surfactin production in a Bacillus subtilis ATCC 21332 culture. Among these tested materials, the addition of 4 [...] Read more.
In this study, four additives—montmorillonite, activated carbon, and the layered double hydroxides (LDHs), Mg2Fe–LDH and Mg2Al–LDH—were tested for their ability to promote surfactin production in a Bacillus subtilis ATCC 21332 culture. Among these tested materials, the addition of 4 g/L of the Mg-Fe LDH, which featured an Mg/Fe molar ratio of 2:1, produced the highest surfactin yield of 5280 mg/L. During the time course of B. subtilis cultivation with the added LDH, two phases of cell growth were evident: Growth and decay. In the growth phase, the cells grew slowly and secreted a high amount of surfactin; in the decay phase, the cells degraded rapidly. The production in the presence of the Mg2Fe–LDH had three characteristics: (i) High surfactin production at low biomass, indicating a high specific surfactin yield of 3.19 g/g DCW; (ii) rapid surfactin production within 24 h, inferring remarkably high productivity (4660 mg/L/d); and (iii) a lower carbon source flux to biomass, suggesting an efficient carbon flux to surfactin, giving a high carbon yield of 52.8%. The addition of Mg2Fe–LDH is an effective means of enhancing surfactin production, with many potential applications and future industrial scale-up. Full article
(This article belongs to the Special Issue Layered Double Hydroxides)
Show Figures

Figure 1

Back to TopTop