Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = azafullerene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4646 KiB  
Article
On the Structural and Vibrational Properties of Solid Endohedral Metallofullerene Li@C60
by Martina Vrankić, Takeshi Nakagawa, Melita Menelaou, Yasuhiro Takabayashi, Naoya Yoshikane, Keisuke Matsui, Ken Kokubo, Kenichi Kato, Saori Kawaguchi-Imada, Hirokazu Kadobayashi, John Arvanitidis, Yoshiki Kubota and Kosmas Prassides
Inorganics 2024, 12(4), 99; https://doi.org/10.3390/inorganics12040099 - 29 Mar 2024
Cited by 1 | Viewed by 1979
Abstract
The endohedral lithium fulleride, Li+@C60•−, is a potential precursor for new families of molecular superconducting and electronic materials beyond those accessible to date from C60 itself. Solid Li@C60 comprises (Li@C60)2 dimers, isostructural and [...] Read more.
The endohedral lithium fulleride, Li+@C60•−, is a potential precursor for new families of molecular superconducting and electronic materials beyond those accessible to date from C60 itself. Solid Li@C60 comprises (Li@C60)2 dimers, isostructural and isoelectronic with the (C59N)2 units found in solid azafullerene. Here, we investigate the structural and vibrational properties of Li@C60 samples synthesized by electrolytic reduction routes. The resulting materials are of high quality, with crystallinity far superior to that of their antecedents isolated by chemical reduction. They permit facile, unambiguous identification of both the reduced state of the fulleride units and the interball C-C bonds responsible for dimerization. However, severe orientational disorder conceals any crystal symmetry lowering due to the presence of dimers. Diffraction reveals the adoption of a hexagonal crystal structure (space group P63/mmc) at both low temperatures and high pressures, typically associated with close-packing of spherical monomer units. Such a situation is reminiscent of the structural behavior of the high-pressure Phase I of solid dihydrogen, H2. Full article
(This article belongs to the Special Issue Research on Metallofullerenes)
Show Figures

Figure 1

18 pages, 1983 KiB  
Article
Core-Hole Excitation Spectra of the Oxides and Hydrates of Fullerene C60 and Azafullerene C59N
by Xiong Li, Shuyi Wang, Jingdong Guo, Ziye Wu, Changrui Guo, Shaohong Cai and Mingsen Deng
Molecules 2024, 29(3), 609; https://doi.org/10.3390/molecules29030609 - 26 Jan 2024
Cited by 2 | Viewed by 1597
Abstract
The interaction of fullerenes and their derivatives with environmental molecules such as oxygen or water was crucial for the rational design of low-dimensional materials and devices. In this paper, the near-edge X-ray absorption fine structure (NEXAFS), X-ray emission spectroscopy (XES) and X-ray photoelectron [...] Read more.
The interaction of fullerenes and their derivatives with environmental molecules such as oxygen or water was crucial for the rational design of low-dimensional materials and devices. In this paper, the near-edge X-ray absorption fine structure (NEXAFS), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) shake-up satellites were employed to distinguish the oxides and hydrates of the fullerene C60 and azafullerene C59N families. The study includes various isomers, such as the open [5,6] and closed [6,6] isomers of C60O, C60H(OH), C60-O-C60, C60H-O-C60H, C59N(OH) and C59N-O-C59N, based on density functional theory. These soft X-ray spectra offered comprehensive insights into the molecular orbitals of these azafullerene molecular groups. The oxygen K-edge NEXAFS, carbon and oxygen K-edge XPS shake-up satellite spectra provided valuable tools for distinguishing oxides or hydrates of fullerene C60 and azafullerene C59N. Our findings could significantly benefit the development of fullerene functional molecular materials and expand the application scope of soft X-ray spectroscopy as a molecular fingerprinting tool for the fullerene family. Full article
(This article belongs to the Special Issue Computational Chemistry Insights into Molecular Interactions)
Show Figures

Graphical abstract

16 pages, 4929 KiB  
Article
Theoretical Evaluation of the Properties of Nitrogen-Doped C24 Fullerenes and Their Interactions with Two Adamantane-Derived Antivirals
by Oana-Raluca Pop, Adina Căta and Ioana Maria Carmen Ienașcu
Chemistry 2023, 5(4), 2376-2391; https://doi.org/10.3390/chemistry5040157 - 2 Nov 2023
Cited by 2 | Viewed by 1350
Abstract
The replacement of carbon with a heteroatom within the structure of a fullerene gives the possibility of obtaining compounds with adjustable properties. The influence of aza-substitution on C24 fullerenes was investigated and a comparison of HF and DFT calculations was performed. Various [...] Read more.
The replacement of carbon with a heteroatom within the structure of a fullerene gives the possibility of obtaining compounds with adjustable properties. The influence of aza-substitution on C24 fullerenes was investigated and a comparison of HF and DFT calculations was performed. Various substitution patterns were proposed and the characterization of C22N2 and C20N4 structures was performed. Global reactivity descriptors like chemical potential, hardness, HOMO–LUMO gap and singlet–triplet gap were computed. Aromaticity descriptors like delocalization indices and NICS(0) index were employed for the characterization of each six-membered ring of the studied fullerenes. The possible use of aza-fullerenes as drug delivery systems for two adamantane-derived antivirals was evaluated through molecular docking studies. The best results were obtained for the fullerenes with a pronounced hydrophobic character, the favored configuration of the antiviral drugs being the one oriented toward the side consisting of carbon atoms of the fullerenes. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

9 pages, 576 KiB  
Article
C59N Peapods Sensing the Temperature
by Yongfeng Li, Toshiro Kaneko and Rikizo Hatakeyama
Sensors 2013, 13(1), 966-974; https://doi.org/10.3390/s130100966 - 15 Jan 2013
Cited by 4 | Viewed by 6376
Abstract
We report the novel photoresponse of nanodevices made from azafullerene (C59N)-encapsulated single-walled carbon nanotubes (C59N@SWNTs), so called peapods. The photoconducting properties of a C59N@SWNT are measured over a temperature range of 10 to 300 K under a [...] Read more.
We report the novel photoresponse of nanodevices made from azafullerene (C59N)-encapsulated single-walled carbon nanotubes (C59N@SWNTs), so called peapods. The photoconducting properties of a C59N@SWNT are measured over a temperature range of 10 to 300 K under a field-effect transistor configuration. It is found that the photosensitivity of C59N@SWNTs depends very sensitively on the temperature, making them an attractive candidate as a component of nanothermometers covering a wide temperature range. Our results indicate that it is possible to read the temperature by monitoring the optoelectronics signal of C59N@SWNTs. In particular, sensing low temperatures would become more convenient and easy by giving a simple light pulse. Full article
(This article belongs to the Special Issue Nanotube and Nanowire Sensors)
Show Figures

Back to TopTop