Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = atom-optics kicked rotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 880 KiB  
Article
Resonant Quantum Kicked Rotor as A Continuous-Time Quantum Walk
by Michele Delvecchio, Francesco Petiziol and Sandro Wimberger
Condens. Matter 2020, 5(1), 4; https://doi.org/10.3390/condmat5010004 - 11 Jan 2020
Cited by 11 | Viewed by 4462
Abstract
We analytically investigate the analogy between a standard continuous-time quantum walk in one dimension and the evolution of the quantum kicked rotor at quantum resonance conditions. We verify that the obtained probability distributions are equal for a suitable choice of the kick strength [...] Read more.
We analytically investigate the analogy between a standard continuous-time quantum walk in one dimension and the evolution of the quantum kicked rotor at quantum resonance conditions. We verify that the obtained probability distributions are equal for a suitable choice of the kick strength of the rotor. We further discuss how to engineer the evolution of the walk for dynamically preparing experimentally relevant states. These states are important for future applications of the atom-optics kicked rotor for the realization of ratchets and quantum search. Full article
(This article belongs to the Special Issue Many Body Quantum Chaos)
Show Figures

Figure 1

11 pages, 736 KiB  
Article
Impact of Lattice Vibrations on the Dynamics of a Spinor Atom-Optics Kicked Rotor
by Caspar Groiseau, Alexander Wagner, Gil S. Summy and Sandro Wimberger
Condens. Matter 2019, 4(1), 10; https://doi.org/10.3390/condmat4010010 - 14 Jan 2019
Cited by 4 | Viewed by 3586
Abstract
We investigate the effect of amplitude and phase noise on the dynamics of a discrete-time quantum walk and its related evolution. Our findings underline the robustness of the motion with respect to these noise sources, and can explain the stability of quantum walks [...] Read more.
We investigate the effect of amplitude and phase noise on the dynamics of a discrete-time quantum walk and its related evolution. Our findings underline the robustness of the motion with respect to these noise sources, and can explain the stability of quantum walks that has recently been observed experimentally. This opens the road to measure topological properties of an atom-optics double kicked rotor with an additional internal spin degree of freedom. Full article
Show Figures

Graphical abstract

Back to TopTop