Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = atelocollagen membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1655 KiB  
Article
Effects of Paraspinal Intramuscular Injection of Atelocollagen in Patients with Chronic Low Back Pain: A Retrospective Observational Study
by Tae Kwang Kim and Ho Young Gil
J. Clin. Med. 2024, 13(9), 2607; https://doi.org/10.3390/jcm13092607 - 29 Apr 2024
Cited by 1 | Viewed by 2248
Abstract
Background/Objectives: Atelocollagen is used for soft tissue repair and reconstruction by replacing defective or damaged muscles, membranes, ligaments, and tendons. This study aimed to evaluate the clinical efficacy and safety of additional paraspinal intramuscular injection of atelocollagen on lumbar epidural steroid injection [...] Read more.
Background/Objectives: Atelocollagen is used for soft tissue repair and reconstruction by replacing defective or damaged muscles, membranes, ligaments, and tendons. This study aimed to evaluate the clinical efficacy and safety of additional paraspinal intramuscular injection of atelocollagen on lumbar epidural steroid injection for reducing pain and improving functional capacity of patients with chronic low back pain (CLBP). Methods: We retrospectively enrolled 608 consecutive patients with CLBP who received lumbar epidural steroid injection with or without additional paraspinal intramuscular injection of atelocollagen. The Numerical Rating Scale and the Oswestry Disability Index were used to assess pain and functional capacity, respectively, before the procedure, and three months after the injection. Also, we analyzed the relationship between the additional paraspinal intramuscular injection of atelocollagen and the success rate. Results: Both Numerical Rating Scale and the Oswestry Disability Index scores were significantly reduced in both groups at three months after injection. However, there was a significant difference between the two groups. Furthermore, the success rate was significantly higher in the additional paraspinal intramuscular injection of atelocollagen group. Conclusions: This study’s results showed that additional paraspinal intramuscular injection of atelocollagen on lumbar epidural steroid injection reduced pain and improved functional capacity for patients with CLBP. Therefore, the paraspinal intramuscular injection of atelocollagen may be a promising option for the treatment of patients with CLBP. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

9 pages, 1195 KiB  
Communication
An Implantable Cranial Window Using a Collagen Membrane for Chronic Voltage-Sensitive Dye Imaging
by Nobuo Kunori and Ichiro Takashima
Micromachines 2019, 10(11), 789; https://doi.org/10.3390/mi10110789 - 18 Nov 2019
Cited by 12 | Viewed by 5282
Abstract
Incorporating optical methods into implantable neural sensing devices is a challenging approach for brain–machine interfacing. Specifically, voltage-sensitive dye (VSD) imaging is a powerful tool enabling visualization of the network activity of thousands of neurons at high spatiotemporal resolution. However, VSD imaging usually requires [...] Read more.
Incorporating optical methods into implantable neural sensing devices is a challenging approach for brain–machine interfacing. Specifically, voltage-sensitive dye (VSD) imaging is a powerful tool enabling visualization of the network activity of thousands of neurons at high spatiotemporal resolution. However, VSD imaging usually requires removal of the dura mater for dye staining, and thereafter the exposed cortex needs to be protected using an optically transparent artificial dura. This is a major disadvantage that limits repeated VSD imaging over the long term. To address this issue, we propose to use an atelocollagen membrane as the dura substitute. We fabricated a small cranial chamber device, which is a tubular structure equipped with a collagen membrane at one end of the tube. We implanted the device into rats and monitored neural activity in the frontal cortex 1 week following surgery. The results indicate that the collagen membrane was chemically transparent, allowing VSD staining across the membrane material. The membrane was also optically transparent enough to pass light; forelimb-evoked neural activity was successfully visualized through the artificial dura. Because of its ideal chemical and optical manipulation capability, this collagen membrane may be widely applicable in various implantable neural sensors. Full article
(This article belongs to the Special Issue Implantable Neural Sensors for the Brain Machine Interface)
Show Figures

Figure 1

13 pages, 5946 KiB  
Article
Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration
by Kyoung-Sub Hwang, Jae-Won Choi, Jae-Hun Kim, Ho Yun Chung, Songwan Jin, Jin-Hyung Shim, Won-Soo Yun, Chang-Mo Jeong and Jung-Bo Huh
Materials 2017, 10(4), 421; https://doi.org/10.3390/ma10040421 - 17 Apr 2017
Cited by 60 | Viewed by 8077
Abstract
The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP [...] Read more.
The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/β-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/β-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/β-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/β-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/β-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use. Full article
Show Figures

Figure 1

Back to TopTop