Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = asymmetric ion-pair catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6502 KiB  
Review
Recent Advances in Enantioselective Transition Metal Catalysis Mediated by Ligand–Substrate Noncovalent Interactions
by Zhen Cao, Dongyang He, Lin Luo and Wenjun Tang
Catalysts 2025, 15(4), 395; https://doi.org/10.3390/catal15040395 - 18 Apr 2025
Viewed by 1505
Abstract
Enantioselective transition metal catalysis is undoubtedly a cornerstone at the frontier of chemistry, attracting intense interest from both academia and the pharmaceutical industry. Central to this field is the strategic utilization of noncovalent interactions (NCIs), including hydrogen bonding, ion pairing, and π-system engagements, [...] Read more.
Enantioselective transition metal catalysis is undoubtedly a cornerstone at the frontier of chemistry, attracting intense interest from both academia and the pharmaceutical industry. Central to this field is the strategic utilization of noncovalent interactions (NCIs), including hydrogen bonding, ion pairing, and π-system engagements, which not only drive asymmetric synthesis but also enable precise stereochemical control in transition metal-catalyzed transformations. Recent breakthroughs have unveiled a new generation of rationally designed ligands that exploit ligand–substrate noncovalent interactions, emerging as indispensable tools for stereocontrolled synthesis and setting new paradigms in ligand engineering. These advancements establish a transformative framework for ligand engineering, bridging fundamental mechanistic insights with practical synthetic utility. In this review, the judicious design concepts and syntheses of novel ligands from the past five years were highlighted and their synthetic applications in asymmetric catalysis were detailed. Full article
(This article belongs to the Special Issue Recent Catalysts for Organic Synthesis)
Show Figures

Graphical abstract

65 pages, 21118 KiB  
Letter
Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis
by Pierre Vogel, Yu-hong Lam, Adam Simon and Kendall N. Houk
Catalysts 2016, 6(9), 128; https://doi.org/10.3390/catal6090128 - 26 Aug 2016
Cited by 40 | Viewed by 20873
Abstract
Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the [...] Read more.
Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes) or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines), P- (e.g., tertiary phosphines) and C-nucleophiles (e.g., N-heterocyclic carbenes). Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes. Full article
(This article belongs to the Special Issue Metal-free Organocatalysis)
Show Figures

Figure 1

30 pages, 544 KiB  
Article
Cooperative Al(Salen)-Pyridinium Catalysts for the Asymmetric Synthesis of trans-Configured β-Lactones by [2+2]-Cyclocondensation of Acylbromides and Aldehydes: Investigation of Pyridinium Substituent Effects
by Patrick Meier, Florian Broghammer, Katja Latendorf, Guntram Rauhut and René Peters
Molecules 2012, 17(6), 7121-7150; https://doi.org/10.3390/molecules17067121 - 12 Jun 2012
Cited by 49 | Viewed by 8258
Abstract
The trans-selective catalytic asymmetric formation of β-lactones constitutes an attractive surrogate for anti-aldol additions. Recently, we have reported the first catalyst which is capable of forming trans-β-lactones with high enantioselectivity from aliphatic (and aromatic) aldehyde substrates by cyclocondensation with acyl [...] Read more.
The trans-selective catalytic asymmetric formation of β-lactones constitutes an attractive surrogate for anti-aldol additions. Recently, we have reported the first catalyst which is capable of forming trans-β-lactones with high enantioselectivity from aliphatic (and aromatic) aldehyde substrates by cyclocondensation with acyl bromides. In that previous study the concepts of Lewis acid and organic aprotic ion pair catalysis were combined in a salen-type catalyst molecule. Since a pyridinium residue on the salen periphery is essential for high trans- and enantioselectivity, we were interested in the question of whether substituents on the pyridinium rings could be used to further improve the catalyst efficiency, as they might have a significant impact on the effective charges within the heterocycles. In the present study we have thus compared a small library of aluminum salen/bispyridinium catalysts mainly differing in the substituents on the pyridinium residues. As one result of these studies a new catalyst was identified which offers slightly superior stereoselectivity as compared to the previously reported best catalyst. NBO calculations have revealed that the higher stereoselectivity can arguably not be explained by the variation of the effective charge. Full article
(This article belongs to the Special Issue Asymmetric Catalysis)
Show Figures

Graphical abstract

Back to TopTop