Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = astroglial GABA transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6448 KiB  
Article
Nanoemulsions of Cannabidiol, Δ9-Tetrahydrocannabinol, and Their Combination Similarly Exerted Anticonvulsant and Antioxidant Effects in Mice Treated with Pentylenetetrazole
by Pedro Everson Alexandre de Aquino, Francisco Josimar Girão Júnior, Tyciane de Souza Nascimento, Ítalo Rosal Lustosa, Geanne Matos de Andrade, Nágila Maria Pontes Silva Ricardo, Débora Hellen Almeida de Brito, Gabriel Érik Patrício de Almeida, Kamilla Barreto Silveira, Davila Zampieri, Marta Maria de França Fonteles, Edilberto Rocha Silveira, Giuseppe Biagini and Glauce Socorro de Barros Viana
Pharmaceuticals 2025, 18(6), 782; https://doi.org/10.3390/ph18060782 (registering DOI) - 23 May 2025
Viewed by 725
Abstract
Background/Objectives: The main biologically active molecules of Cannabis sativa L. are cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Both exert anticonvulsant effects when evaluated as single drugs, but their possible interaction as components of C. sativa extracts has been scarcely studied. For this reason, we [...] Read more.
Background/Objectives: The main biologically active molecules of Cannabis sativa L. are cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Both exert anticonvulsant effects when evaluated as single drugs, but their possible interaction as components of C. sativa extracts has been scarcely studied. For this reason, we evaluated CBD and THC, combined or not, in two seizure models in mice, using an improved vehicle formula. Methods: Firstly, acute seizures were induced by intraperitoneal (i.p.) pentylenetetrazole (PTZ, 80 mg/kg), and mice received CBD or THC at 1, 3, 6, and 10 mg/kg, or a CBD/THC 1:1 combination at 1.5, 3, and 6 mg/kg, per os (p.o.), one hour before PTZ administration. Secondly, mice received p.o. CBD (10 mg/kg), CBD/THC (1.5, 3, and 6 mg/kg), valproic acid (50 mg/kg), or vehicle (nanoemulsions without CBD or THC), one hour before PTZ (30 mg/kg, i.p.) every other day for 21 days. Behavioral, biochemical, and immunohistochemical analyses were performed to assess the response to PTZ, oxidative stress, and astroglial activation. Results: In the acute model, CBD and THC at 3–10 mg/kg, and their combinations, significantly increased latency to generalized seizures and death, and improved survival rates. In the chronic model, similarly to valproic acid, CBD 10 mg/kg and CBD/THC at 1.5 and 3 mg/kg delayed kindling acquisition, while CBD/THC 6 mg/kg had no effect. CBD and CBD/THC treatments reduced oxidative and nitrosative stress and attenuated astrogliosis, as indicated by decreased glial fibrillary acidic protein and GABA transporter 1 expression and increased inwardly rectifying potassium channel 4.1 expression in hippocampal regions. However, no cannabinoid treatment prevented the impairment in novel object recognition and Y maze tests. Conclusions: These findings support the potential role of cannabinoids in counteracting seizures, possibly by reducing oxidative stress and astrogliosis. The study also highlights the importance of nanoemulsions as a delivery vehicle to enhance cannabinoid effectiveness while considering the risks associated with direct cannabinoid receptor activation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

12 pages, 2873 KiB  
Article
Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity
by Zsolt Szabó, Márton Péter, László Héja and Julianna Kardos
Biomolecules 2021, 11(4), 604; https://doi.org/10.3390/biom11040604 - 19 Apr 2021
Cited by 9 | Viewed by 3745
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by [...] Read more.
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse. Full article
Show Figures

Figure 1

12 pages, 2176 KiB  
Article
Slc38a1 Conveys Astroglia-Derived Glutamine into GABAergic Interneurons for Neurotransmitter GABA Synthesis
by Tayyaba Qureshi, Mona Bjørkmo, Kaja Nordengen, Vidar Gundersen, Tor Paaske Utheim, Leiv Otto Watne, Jon Storm-Mathisen, Bjørnar Hassel and Farrukh Abbas Chaudhry
Cells 2020, 9(7), 1686; https://doi.org/10.3390/cells9071686 - 13 Jul 2020
Cited by 25 | Viewed by 5150
Abstract
GABA signaling is involved in a wide range of neuronal functions, such as synchronization of action potential firing, synaptic plasticity and neuronal development. Sustained GABA signaling requires efficient mechanisms for the replenishment of the neurotransmitter pool of GABA. The prevailing theory is that [...] Read more.
GABA signaling is involved in a wide range of neuronal functions, such as synchronization of action potential firing, synaptic plasticity and neuronal development. Sustained GABA signaling requires efficient mechanisms for the replenishment of the neurotransmitter pool of GABA. The prevailing theory is that exocytotically released GABA may be transported into perisynaptic astroglia and converted to glutamine, which is then shuttled back to the neurons for resynthesis of GABA—i.e., the glutamate/GABA-glutamine (GGG) cycle. However, an unequivocal demonstration of astroglia-to-nerve terminal transport of glutamine and the contribution of astroglia-derived glutamine to neurotransmitter GABA synthesis is lacking. By genetic inactivation of the amino acid transporter Solute carrier 38 member a1 (Slc38a1)—which is enriched on parvalbumin+ GABAergic neurons—and by intraperitoneal injection of radiolabeled acetate (which is metabolized to glutamine in astroglial cells), we show that Slc38a1 mediates import of astroglia-derived glutamine into GABAergic neurons for synthesis of GABA. In brain slices, we demonstrate the role of Slc38a1 for the uptake of glutamine specifically into GABAergic nerve terminals for the synthesis of GABA depending on demand and glutamine supply. Thus, while leaving room for other pathways, our study demonstrates a key role of Slc38a1 for newly formed GABA, in harmony with the existence of a GGG cycle. Full article
(This article belongs to the Special Issue Astrocytes in Space and Time)
Show Figures

Graphical abstract

Back to TopTop