Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = arginine-glycine-aspartic acid tripeptide (RGD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4862 KB  
Article
Interaction Regularity of Biomolecules on Mg and Mg-Based Alloy Surfaces: A First-Principles Study
by Zhe Fang, Baiwei Ma, Erjun Liang, Yu Jia and Shaokang Guan
Coatings 2024, 14(1), 25; https://doi.org/10.3390/coatings14010025 - 25 Dec 2023
Cited by 75 | Viewed by 2456
Abstract
Adsorbed molecules can modulate the behavior of magnesium (Mg) and Mg alloy in biomedical applications. The interaction regularity and mechanism of biomolecules (such as amino acids, dipeptides, and tripeptide) on a Mg(0001) surface, the influence of dipole correction, and the effects of alloying [...] Read more.
Adsorbed molecules can modulate the behavior of magnesium (Mg) and Mg alloy in biomedical applications. The interaction regularity and mechanism of biomolecules (such as amino acids, dipeptides, and tripeptide) on a Mg(0001) surface, the influence of dipole correction, and the effects of alloying elements and electronic structure were investigated in this study using first-principles calculations. Specifically, the adsorption energy (Eads) of functional groups (-NH2, -COOH and -CN3H4), amino acids (arginine (Arg), glycine (Gly), and aspartic acid (Asp)), dipeptides (arginine–glycine (Arg-Gly), glycine–aspartic acid (Gly-Asp), and arginine–aspartic acid (Arg-Asp)), and arginine–glycine–aspartic acid (RGD) tripeptide were systematically calculated. Dipole correction slightly enhanced the interaction between molecules and Mg surfaces, but the Eads trend remained unchanged. The addition of alloying elements improved the interaction of molecules and Mg-based alloy surfaces. This study will be of fundamental importance in understanding the interaction regularity of molecules on Mg and Mg-based alloy surfaces and provide possibilities for surface modification design of biomedical materials. Full article
(This article belongs to the Special Issue Recent Progress in Surface and Interface Properties of Nanostructures)
Show Figures

Figure 1

16 pages, 4577 KB  
Article
Preparation and Properties of Natural Polysaccharide-Based Drug Delivery Nanoparticles
by Xuelian Chen, Lijia Liu, Chen Shen, Fangyan Liu, Enyu Xu, Yin Chen and Wang Jie
Polymers 2023, 15(11), 2510; https://doi.org/10.3390/polym15112510 - 30 May 2023
Cited by 8 | Viewed by 3097
Abstract
In recent years, natural polysaccharides have been widely used in the preparation of drug delivery systems. In this paper, novel polysaccharide-based nanoparticles were prepared by layer-by-layer assembly technology using silica as a template. The layers of nanoparticles were constructed based on the electrostatic [...] Read more.
In recent years, natural polysaccharides have been widely used in the preparation of drug delivery systems. In this paper, novel polysaccharide-based nanoparticles were prepared by layer-by-layer assembly technology using silica as a template. The layers of nanoparticles were constructed based on the electrostatic interaction between a new pectin named NPGP and chitosan (CS). The targeting ability of nanoparticles was formed by grafting the RGD peptide, a tri-peptide motif containing arginine, glycine, and aspartic acid with high affinity to integrin receptors. The layer-by-layer assembly nanoparticles (RGD-(NPGP/CS)3NPGP) exhibited a high encapsulation efficiency (83.23 ± 6.12%), loading capacity (76.51 ± 1.24%), and pH-sensitive release property for doxorubicin. The RGD-(NPGP/CS)3NPGP nanoparticles showed better targeting to HCT-116 cells, the integrin αvβ3 high expression human colonic epithelial tumor cell line with higher uptake efficiency than MCF7 cells, the human breast carcinoma cell line with normal integrin expression. In vitro antitumor activity tests showed that the doxorubicin-loaded nanoparticles could effectively inhibit the proliferation of the HCT-116 cells. In conclusion, RGD-(NPGP/CS)3NPGP nanoparticles have potential as novel anticancer drug carriers because of their good targeting and drug-carrying activity. Full article
(This article belongs to the Special Issue Advanced Polymer-Based Composites for Biomedical Applications)
Show Figures

Figure 1

28 pages, 11221 KB  
Article
RGD-PEG-PLA Delivers MiR-133 to Infarct Lesions of Acute Myocardial Infarction Model Rats for Cardiac Protection
by Bixi Sun, Shuwen Liu, Rubin Hao, Xinyue Dong, Lanbo Fu and Bing Han
Pharmaceutics 2020, 12(6), 575; https://doi.org/10.3390/pharmaceutics12060575 - 21 Jun 2020
Cited by 38 | Viewed by 4555
Abstract
Studies have shown that microRNA-133 (miR-133) plays a positive role in the growth of cardiac myocytes, the maintenance of cardiac homeostasis, and the recovery of cardiac function, which is of great significance for the recovery of acute myocardial infarction. However, the delivery of [...] Read more.
Studies have shown that microRNA-133 (miR-133) plays a positive role in the growth of cardiac myocytes, the maintenance of cardiac homeostasis, and the recovery of cardiac function, which is of great significance for the recovery of acute myocardial infarction. However, the delivery of miRNA to the site of action remains a challenge at present. The purpose of this study was to design an ideal carrier to facilitate the delivery of miR-133 to the infarct lesion for cardiac protection. A disease model was constructed by ligating the left anterior descending coronary artery of rats, and polyethylene glycol (PEG)-polylactic acid (PLA) nanoparticles modified with arginine-glycine-aspartic acid tripeptide (RGD) carrying miR-133 were injected via the tail vein. The effects of miR-133 were evaluated from multiple perspectives, including cardiac function, blood indexes, histopathology, and myocardial cell apoptosis. The results showed that RGD-PEG-PLA maintained a high level of distribution in the hearts of model rats, indicating the role of the carrier in targeting the heart infarction lesions. RGD-PEG-PLA/miR-133 alleviated cardiac histopathological changes, reduced the apoptosis of cardiomyocytes, and reduced the levels of factors associated with myocardial injury. Studies on the mechanism of miR-133 by immunohistochemistry and polymerase chain reaction demonstrated that the expression level of Sirtuin3 (SIRT3) was increased and that the expression of adenosine monophosphate activated protein kinase (AMPK) decreased in myocardial tissue. In summary, the delivery of miR-133 by RGD-PEG-PLA carrier can achieve cardiac lesion accumulation, thereby improving the cardiac function damage and reducing the myocardial infarction area. The inhibition of cardiomyocyte apoptosis, inflammation, and oxidative stress plays a protective role in the heart. The mechanism may be related to the regulation of the SIRT3/AMPK pathway. Full article
Show Figures

Graphical abstract

16 pages, 2194 KB  
Article
Dendritic Scaffold onto Titanium Implants. A Versatile Strategy Increasing Biocompatibility
by Noemi Molina, Ana González, Donato Monopoli, Belinda Mentado, José Becerra, Leonor Santos-Ruiz, Yolanda Vida and Ezequiel Perez-Inestrosa
Polymers 2020, 12(4), 770; https://doi.org/10.3390/polym12040770 - 1 Apr 2020
Cited by 8 | Viewed by 4247
Abstract
Osseointegration of metal prosthetic implants is a yet unresolved clinical need that depends on the interplay between the implant surface and bone cells. The lack of a relationship between bone cells and metal has traditionally been solved by coating the former with “organic” [...] Read more.
Osseointegration of metal prosthetic implants is a yet unresolved clinical need that depends on the interplay between the implant surface and bone cells. The lack of a relationship between bone cells and metal has traditionally been solved by coating the former with “organic” ceramics, such as hydroxyapatite. A novel approach is hereby presented, immobilizing covalently dendrimeric structures onto titanium implants. Amide-based amino terminal dendrons were synthetized and coupled to titanium surfaces in a versatile and controlled way. The dendritic moieties provide an excellent scaffold for the covalent immobilization of bioactive molecules, such as extracellular matrix (ECM) protein components or antibiotics. Herein, tripeptide arginine-glycine-aspartic acid (RGD) motifs were used to decorate the dendritic scaffolds and their influence on cell adhesion and proliferation processes was evaluated. Full article
(This article belongs to the Special Issue Polymeric Materials for Dental Applications)
Show Figures

Graphical abstract

13 pages, 3848 KB  
Article
An RGD-Containing Peptide Derived from Wild Silkworm Silk Fibroin Promotes Cell Adhesion and Spreading
by Zhao Kang, Yining Wang, Jingjing Xu, Guangzhou Song, Mengyao Ding, Huanrong Zhao and Jiannan Wang
Polymers 2018, 10(11), 1193; https://doi.org/10.3390/polym10111193 - 26 Oct 2018
Cited by 46 | Viewed by 6661
Abstract
Arginine-Glycine-Aspartate (RGD) tripeptide can promote cell adhesion when present in the amino acid of proteins such as fibronectin. In order to demonstrate the bioactivity of an RGD-containing silk protein, a gene encoding the RGD motif-containing peptide GSGAGGRGDGGYGSGSS (–RGD–) derived from nonmulberry silk was [...] Read more.
Arginine-Glycine-Aspartate (RGD) tripeptide can promote cell adhesion when present in the amino acid of proteins such as fibronectin. In order to demonstrate the bioactivity of an RGD-containing silk protein, a gene encoding the RGD motif-containing peptide GSGAGGRGDGGYGSGSS (–RGD–) derived from nonmulberry silk was designed and cloned, then multimerised and inserted into a commercial pGEX expression vector for recombinant expression of (–RGD–)n peptides. Herein, we focus on two glutathione-S-transferase (GST)-tagged fusion proteins, GST–(–RGD–)4 and GST–(–RGD–)8, which were expressed in Escherichia coli BL21, purified by GST affinity chromatography, and analyzed with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MS). Target peptides (–RGD–)4 and (–RGD–)8 (6.03 and 11.5 kDa) were cleaved from the GST-tag by thrombin digestion, as verified with MS and SDS-PAGE. Isoelectric point analysis confirmed that target peptides were expressed and released in accordance with the original design. Target peptides self-assembled into a mainly α-helical structure, as determined by circular dichroism spectroscopy. Furthermore, (–RGD–)4 and (–RGD–)8 modified mulberry silk fibroin films were more effective for rapid cell adhesion, spreading and proliferative activity of L929 cells than some chemically synthesized RGD peptides modified and mulberry silk lacking the RGD motif. Full article
Show Figures

Graphical abstract

Back to TopTop