Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = apple-based alley cropping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7740 KiB  
Article
Simulation of Soil Water Transport and Utilization in an Apple–Soybean Alley Cropping System Under Different Irrigation Methods Based on HYDRUS-2D
by Xueying Zhang, Ruoshui Wang, Houshuai Dai, Lisha Wang, Li Chen, Huiying Zheng and Feiyang Yu
Agronomy 2025, 15(4), 993; https://doi.org/10.3390/agronomy15040993 - 21 Apr 2025
Viewed by 428
Abstract
This study employed the HYDRUS-2D model to simulate soil water movement and water productivity (WP) in an apple–soybean alley cropping system in the Loess Plateau region, Shanxi Province, China, under four irrigation methods: mulched drip irrigation, subsurface drip irrigation, bubbler irrigation, and rainwater-harvesting [...] Read more.
This study employed the HYDRUS-2D model to simulate soil water movement and water productivity (WP) in an apple–soybean alley cropping system in the Loess Plateau region, Shanxi Province, China, under four irrigation methods: mulched drip irrigation, subsurface drip irrigation, bubbler irrigation, and rainwater-harvesting ditch irrigation, with varying water management treatments. Field experiments provided 2022 data for model calibration and 2023 data for validation using soil water content (SWC) measurements, achieving R2 = 0.80–0.87 and RMSE = 0.011–0.017 cm3·cm−3, confirming robust simulation accuracy. The simulation results indicated that different irrigation methods had a significant impact on the soil water distribution. Mulched drip irrigation enhanced the water content in the surface layer (0–20 cm), while subsurface drip irrigation increased the moisture in the middle soil layer (20–40 cm). Bubbler irrigation was most effective in replenishing both the surface (0–20 cm) and middle (20–40 cm) layers. Rainwater-harvesting ditch irrigation significantly improved the soil water content in both the surface (0–20 cm) and middle (20–40 cm) layers, with minimal changes observed in the deep layer (40–120 cm). Furthermore, soil water variations were significantly influenced by the water uptake of tree roots. In 2022, soil moisture initially increased with distance, then decreased, and subsequently increased again, while in 2023, it increased initially and then stabilized. When the irrigation amount was limited to 75% of the field capacity in the 0–60 cm soil layer, water productivity (WP) reached its optimum, with values of 4.79 kg/m3 (2022) and 5.56 kg/m3 (2023). Based on the simulation results, it is recommended that young apple trees be irrigated using subsurface drip irrigation with a soil layer depth of 30 cm, while soybeans should be irrigated with mulched drip irrigation. Both crops should be irrigated at the podding and filling stages of soybeans, and the irrigation amount should be limited to 75% of the field water capacity in the 0–60 cm soil layer. This study was designed to aid orchard growers in precision irrigation and water optimization. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

17 pages, 1673 KiB  
Article
Management to Promote Flowering Understoreys Benefits Natural Enemy Diversity, Aphid Suppression and Income in an Agroforestry System
by Tom Staton, Richard Walters, Jo Smith, Tom Breeze and Robbie Girling
Agronomy 2021, 11(4), 651; https://doi.org/10.3390/agronomy11040651 - 29 Mar 2021
Cited by 20 | Viewed by 5193
Abstract
Agroforestry systems, where productive trees are integrated into agricultural land, can deliver benefits to biodiversity, natural pest control, and pollination, but the effects are highly variable. Recent advances in our understanding of flower strips in agricultural systems suggest that the management of the [...] Read more.
Agroforestry systems, where productive trees are integrated into agricultural land, can deliver benefits to biodiversity, natural pest control, and pollination, but the effects are highly variable. Recent advances in our understanding of flower strips in agricultural systems suggest that the management of the tree row understorey could be an important contributor to this variation. Here, we compare two cutting regimes for an understorey, originally seeded with the same flower mix, in the tree rows of an apple-arable agroforestry system: (i) uncut vegetation to promote a flowering understorey, and (ii) regularly mown vegetation. We recorded the effects of management on invertebrate pests, natural enemies, and pollinators, in both the apple and arable components. Apple trees above flowering understoreys supported significantly: (i) more natural enemies early in the season, (ii) fewer aphid colonies, (iii) fewer aphid-damaged fruits, and (iv) higher pollinator visitation, compared with those above mown understoreys. In the arable crop alleys, both the taxonomic richness and Shannon diversity of ground-based natural enemies were significantly higher adjacent to flowering understoreys, compared with those adjacent to mown understoreys, early in the season. Financial modelling based on aphid damage to apples, mowing costs, and income from Countryside Stewardship grants, indicated that flowering understoreys increased farm income by GBP 231.02 per ha of agroforestry compared with mown understoreys. Our results provide the first empirical evidence that management to promote flowering understoreys in agroforestry systems can be a win-win option to improve invertebrate diversity, associated ecosystem services, and farm income. Full article
(This article belongs to the Special Issue Alley Cropping—Agroforestry Systems)
Show Figures

Figure 1

19 pages, 1407 KiB  
Article
Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period
by Huasen Xu, Huaxing Bi, Lubo Gao and Lei Yun
Agronomy 2019, 9(1), 34; https://doi.org/10.3390/agronomy9010034 - 15 Jan 2019
Cited by 22 | Viewed by 7034
Abstract
Alley cropping allows the famer to effectively use available resources and yield more benefits. Choosing suitable associated crop and mitigating the competition between trees and crops are crucial for designing the alley cropping systems. We conducted a long-term experiment, including apple (Malus [...] Read more.
Alley cropping allows the famer to effectively use available resources and yield more benefits. Choosing suitable associated crop and mitigating the competition between trees and crops are crucial for designing the alley cropping systems. We conducted a long-term experiment, including apple (Malus pumila)/peanut (Arachis hypogaea), apple/millet (Setaria italica) and apple/maize (Zea mays) alley cropping systems with conventional intercropping distance, and corresponding monocultures (Exp.1), and a short-term experiment with improved intercropping distance in the same three combinations (Exp.2) in the Loess Plateau, China. The results showed crop yields in three alley cropping systems were lower than the corresponding monocultures. Apple yields were significantly constrained by millet and maize in the alley cropping systems, but not sensitive to the presence of peanut. Land equivalent ratios (LERs) ranged from 0.44 to 0.89 before the tree bore fruit. The LERs were greater than 1.0 after the tree bore fruit, and the apple trees made a decisive contribution to the land use advantage. Net present values of three alley cropping systems were on average 60.1% higher than the corresponding monocultures across the alley cropping period. The maximum annual present value in the first–fifth, sixth and seventh–ninth years after the alley cropping establishment was observed in the apple/maize, apple/millet and apple/peanut system, respectively. These results highlight that choosing the optimal alley cropping management and suitable associated crops at different years after establishment may allow farmers to increase the land use efficiency and economic profitability. Full article
Show Figures

Figure 1

Back to TopTop