Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = antimicrobial and remineralizing composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1677 KiB  
Systematic Review
Nanotechnology and Its Application in Dentistry: A Systematic Review of Recent Advances and Innovations
by Gianna Dipalma, Alessio Danilo Inchingolo, Mariafrancesca Guglielmo, Roberta Morolla, Irene Palumbo, Lilla Riccaldo, Antonio Mancini, Andrea Palermo, Giuseppina Malcangi, Angelo Michele Inchingolo and Francesco Inchingolo
J. Clin. Med. 2024, 13(17), 5268; https://doi.org/10.3390/jcm13175268 - 5 Sep 2024
Cited by 10 | Viewed by 4368
Abstract
Background: This study looks at the clinical applications of nanotechnology in dentistry, with an emphasis on implantology, preventive care, orthodontics, restorative dentistry, and endodontics. Methods: Following PRISMA criteria and registered in PROSPERO (ID: CRD 564245), a PubMed, Scopus, and Web of Science search [...] Read more.
Background: This study looks at the clinical applications of nanotechnology in dentistry, with an emphasis on implantology, preventive care, orthodontics, restorative dentistry, and endodontics. Methods: Following PRISMA criteria and registered in PROSPERO (ID: CRD 564245), a PubMed, Scopus, and Web of Science search was conducted for studies from January 2014 to April 2024. The criteria were English-language research on nanotechnology in dental coatings, with a focus on clinical trials and observational studies. The electronic database search yielded 8881 publications. Following the screening process, 17 records were selected for qualitative analysis. Results: Nanotechnology has revolutionized dentistry. In orthodontics, nanoparticles improve antibacterial characteristics, durability, and biocompatibility, lowering bacterial colonization and plaque. In preventative care, Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) combined with stannous fluoride (SnF2) and nano-sized sodium trimetaphosphate (TMPnano) substantially remineralizes enamel. Nanostructured surfaces in dental implants, particularly those containing calcium, improve osseointegration and stability. Nanoparticles in restorative dentistry improve composite and adhesive strength, aesthetics, and longevity. Conclusions: Nanotechnology improves dental materials and equipment, resulting in better treatment outcomes and increased patient comfort. Its integration provides more effective treatments, which improves dental care and patient outcomes. More research is needed to overcome present problems and expand nanotechnology’s medicinal applications. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

12 pages, 2665 KiB  
Article
Experimental Composite Resin with Myristyltrimethylammonium Bromide (MYTAB) and Alpha-Tricalcium Phosphate (α-TCP): Antibacterial and Remineralizing Effect
by Juan Carlos Pontons-Melo, Gabriela de Souza Balbinot, Salvatore Sauro and Fabrício Mezzomo Collares
J. Funct. Biomater. 2023, 14(6), 303; https://doi.org/10.3390/jfb14060303 - 1 Jun 2023
Cited by 4 | Viewed by 2031
Abstract
The aim of this study was to develop an experimental composite resin with the addition of myristyltrimethylammonium bromide (MYTAB) and α -tricalcium phosphate (α-TCP) as an antibacterial and remineralizing material. Experimental composite resins composed of 75 wt% Bisphenol A-Glycidyl Methacrylate (BisGMA) and 25 [...] Read more.
The aim of this study was to develop an experimental composite resin with the addition of myristyltrimethylammonium bromide (MYTAB) and α -tricalcium phosphate (α-TCP) as an antibacterial and remineralizing material. Experimental composite resins composed of 75 wt% Bisphenol A-Glycidyl Methacrylate (BisGMA) and 25 wt% Triethylene Glycol Dimethacrylate (TEGDMA) were produced. Some 1 mol% Trimethyl benzoyl-diphenylphosphine oxide (TPO) was used as a photoinitiator, and butylated hydroxytoluene (BTH) was added as a polymerization inhibitor. Silica (1.5 wt%) and barium glass (65 wt%) particles were added as inorganic fillers. For remineralizing and antibacterial effect, α-TCP (10 wt%) and MYTAB (5 wt%) were incorporated into the resin matrix (α-TCP/MYTAB group). A group without the addition of α-TCP/MYTAB was used as a control. Resins were evaluated for their degree of conversion (n = 3) by Fourier Transform Infrared Spectroscopy (FTIR). The flexural strength (n = 5) was assessed based on ISO 4049:2019 requirements. Microhardness was assessed to calculate softening in solvent (n = 3) after ethanol immersion. The mineral deposition (n = 3) was evaluated after immersion in SBF, while cytotoxicity was tested with HaCaT cells (n = 5). Antimicrobial activity (n = 3) was analyzed against S. mutans. The degree of conversion was not influenced by the antibacterial and remineralizing compounds, and all groups reached values > 60%. The α-TCP/MYTAB addition promoted increased softening of polymers after immersion in ethanol and reduced their flexural strength and the viability of cells in vitro. A reduction in S. mutans viability was observed for the α-TCP/MYTAB group in biofilm formation and planktonic bacteria, with an antibacterial effect > 3log10 for the developed materials. Higher intensity of phosphate compounds on the sample’s surface was detected in the α-TCP/MYTAB group. The addition of α-TCP and MYTAB promoted remineralizing and antibacterial effects on the developed resins and may be a strategy for bioactive composites. Full article
(This article belongs to the Special Issue Recent Advances in Dental Resin Composites)
Show Figures

Figure 1

15 pages, 4055 KiB  
Article
Reconfigurable Dual Peptide Tethered Polymer System Offers a Synergistic Solution for Next Generation Dental Adhesives
by Esra Yuca, Sheng-Xue Xie, Linyong Song, Kyle Boone, Nilan Kamathewatta, Sarah K. Woolfolk, Philip Elrod, Paulette Spencer and Candan Tamerler
Int. J. Mol. Sci. 2021, 22(12), 6552; https://doi.org/10.3390/ijms22126552 - 18 Jun 2021
Cited by 14 | Viewed by 3798
Abstract
Resin-based composite materials have been widely used in restorative dental materials due to their aesthetic, mechanical, and physical properties. However, they still encounter clinical shortcomings mainly due to recurrent decay that develops at the composite-tooth interface. The low-viscosity adhesive that bonds the composite [...] Read more.
Resin-based composite materials have been widely used in restorative dental materials due to their aesthetic, mechanical, and physical properties. However, they still encounter clinical shortcomings mainly due to recurrent decay that develops at the composite-tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal this interface, but the adhesive seal is inherently defective and readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite-tooth interface and bacterial by-products demineralize the tooth and erode the adhesive. These activities lead to wider and deeper gaps that provide an ideal environment for bacteria to proliferate. This complex degradation process mediated by several biological and environmental factors damages the tooth, destroys the adhesive seal, and ultimately, leads to failure of the composite restoration. This paper describes a co-tethered dual peptide-polymer system to address composite-tooth interface vulnerability. The adhesive system incorporates an antimicrobial peptide to inhibit bacterial attack and a hydroxyapatite-binding peptide to promote remineralization of damaged tooth structure. A designer spacer sequence was incorporated into each peptide sequence to not only provide a conjugation site for methacrylate (MA) monomer but also to retain active peptide conformations and enhance the display of the peptides in the material. The resulting MA-antimicrobial peptides and MA-remineralization peptides were copolymerized into dental adhesives formulations. The results on the adhesive system composed of co-tethered peptides demonstrated both strong metabolic inhibition of S. mutans and localized calcium phosphate remineralization. Overall, the result offers a reconfigurable and tunable peptide-polymer hybrid system as next-generation adhesives to address composite-tooth interface vulnerability. Full article
(This article belongs to the Special Issue Recent Advances in Dental Materials and Biomaterials)
Show Figures

Figure 1

13 pages, 5080 KiB  
Review
Dental Restorative Materials for Elderly Populations
by Yuyao Huang, Bingqing Song, Xuedong Zhou, Hui Chen, Haohao Wang and Lei Cheng
Polymers 2021, 13(5), 828; https://doi.org/10.3390/polym13050828 - 8 Mar 2021
Cited by 7 | Viewed by 4675
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the [...] Read more.
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice. Full article
Show Figures

Figure 1

11 pages, 2711 KiB  
Article
Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Association against Oral Pathogens
by Gabriela Lopes Fernandes, Alberto Carlos Botazzo Delbem, Jackeline Gallo Do Amaral, Luiz Fernando Gorup, Renan Aparecido Fernandes, Francisco Nunes De Souza Neto, José Antonio Santos Souza, Douglas Roberto Monteiro, Alessandra Marçal Agostinho Hunt, Emerson Rodrigues Camargo and Debora Barros Barbosa
Antibiotics 2018, 7(3), 52; https://doi.org/10.3390/antibiotics7030052 - 27 Jun 2018
Cited by 31 | Viewed by 5496
Abstract
Nanobiomaterials combining remineralization and antimicrobial abilities would bring important benefits to control dental caries. This study aimed to produce nanocompounds containing calcium glycerophosphate (CaGP) and silver nanoparticles (AgNP) by varying the reducing agent of silver nitrate (sodium borohydride (B) or sodium citrate (C)), [...] Read more.
Nanobiomaterials combining remineralization and antimicrobial abilities would bring important benefits to control dental caries. This study aimed to produce nanocompounds containing calcium glycerophosphate (CaGP) and silver nanoparticles (AgNP) by varying the reducing agent of silver nitrate (sodium borohydride (B) or sodium citrate (C)), the concentration of silver (1% or 10%), and the CaGP forms (nano or commercial), and analyze its characterization and antimicrobial activity against ATCC Candida albicans (10231) and Streptococcus mutans (25175) by the microdilution method. Controls of AgNP were produced and silver ions (Ag+) were quantified in all of the samples. X-ray diffraction, UV-Vis, and scanning electron microscopy (SEM) analysis demonstrated AgNP associated with CaGP. Ag+ ions were considerably higher in AgCaGP/C. C. albicans was susceptible to nanocompounds produced with both reducing agents, regardless of Ag concentration and CaGP form, being Ag10%CaGP-N/C the most effective compound (19.5–39.0 µg Ag mL−1). While for S. mutans, the effectiveness was observed only for AgCaGP reduced by citrate, also presenting Ag10%CaGP-N the highest effectiveness (156.2–312.5 µg Ag mL−1). Notably, CaGP enhanced the silver antimicrobial potential in about two- and eight-fold against C. albicans and S. mutans when compared with the AgNP controls (from 7.8 to 3.9 and from 250 to 31.2 µg Ag mL−1, respectively). The synthesis that was used in this study promoted the formation of AgNP associated with CaGP, and although the use of sodium borohydride (B) resulted in a pronounced reduction of Ag+, the composite AgCaGP/B was less effective against the microorganisms that were tested. Full article
(This article belongs to the Special Issue Silver-Based Antimicrobials)
Show Figures

Figure 1

19 pages, 3066 KiB  
Article
Antimicrobial Monomers for Polymeric Dental Restoratives: Cytotoxicity and Physicochemical Properties
by Diane R. Bienek, Stanislav A. Frukhtbeyn, Anthony A. Giuseppetti, Ugochukwu C. Okeke and Drago Skrtic
J. Funct. Biomater. 2018, 9(1), 20; https://doi.org/10.3390/jfb9010020 - 27 Feb 2018
Cited by 6 | Viewed by 7994
Abstract
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide [...] Read more.
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide (IDMA2), intended for utilization in bi-functional antimicrobial and remineralizing composites, were synthesized, purified with an ethanol-diethyl ether-hexane solvent system, and validated by nuclear magnetic resonance (1H and 13C NMR) spectroscopy, mass spectrometry, and Fourier-transform infrared spectroscopy. When incorporated into light-curable urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA (PEG-U)/ethyl 2-(hydroxymethyl)acrylate (EHMA) (assigned UPE) resins, IDMAs did not affect the overall resins’ hydrophilicity/hydrophobicity balance (water contact angle: 60.8–65.5°). The attained degrees of vinyl conversion (DVC) were consistently higher in both IDMA-containing copolymers and their amorphous calcium phosphate (ACP) composites (up to 5% and 20%, respectively) reaching 92.5% in IDMA2 formulations. Notably, these high DVCs values were attained without an excessive increase in polymerization stress. The observed reduction in biaxial flexure strength of UPE-IDMA ACP composites should not prevent further evaluation of these materials as multifunctional Class V restoratives. In direct contact with human gingival fibroblasts, at biologically relevant concentrations, IDMAs did not adversely affect cell viability or their metabolic activity. Ion release from the composites was indicative of their strong remineralization potential. The above, early-phase biocompatibility and physicochemical tests justify further evaluation of these experimental materials to identify formulation(s) suitable for clinical testing. Successful completion is expected to yield a new class of restoratives with well-controlled bio-function, which will physicochemically, mechanically, and biologically outperform the conventional Class V restoratives. Full article
(This article belongs to the Special Issue Dental Implant Materials and Biomaterials)
Show Figures

Graphical abstract

18 pages, 465 KiB  
Review
The Use of Quaternary Ammonium to Combat Dental Caries
by Yang Ge, Suping Wang, Xuedong Zhou, Haohao Wang, Hockin H. K. Xu and Lei Cheng
Materials 2015, 8(6), 3532-3549; https://doi.org/10.3390/ma8063532 - 17 Jun 2015
Cited by 55 | Viewed by 9396
Abstract
Resin composites and adhesives are increasingly popular in dental restorations, but secondary caries is one of the main reasons for restoration failure. Quaternary ammonium monomers (QAMs) have an anti-microbial effect and are widely used in many fields. Since the concept of the immobilized [...] Read more.
Resin composites and adhesives are increasingly popular in dental restorations, but secondary caries is one of the main reasons for restoration failure. Quaternary ammonium monomers (QAMs) have an anti-microbial effect and are widely used in many fields. Since the concept of the immobilized antibacterial effect was put forward, dental restorations containing QAMs have been studied to reduce secondary caries. Previous studies have been struggling to develop novel anti-caries materials which might have triple benefits: good mechanical properties, antibacterial effects and remineralization potentials. Different kinds of QAMs have been proven to be effective in inhibiting the growth and metabolism of biofilms. Combination of QAMs and other nanoparticles in resin composites and adhesives could enhance their anti-caries capability. Therefore, QAMs are promising to show significant impact on the future of restorative and preventive dentistry. Full article
(This article belongs to the Special Issue Dental Materials)
Show Figures

Figure 1

Back to TopTop