Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = antigenic essence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 129 KiB  
Abstract
Development of a Fully Automated Microfluidic Electrochemical Sensor on the ESSENCE Platform for Rapid Detection of Single-Stranded DNA
by Niranjan Haridas Menon, Maryom Rahman and Sagnik Basuray
Proceedings 2024, 104(1), 17; https://doi.org/10.3390/proceedings2024104017 - 28 May 2024
Viewed by 666
Abstract
This study presents a fully automated microfluidic electrochemical sensor for the detection of single-stranded DNA (ssDNA) on the ESSENCE platform. The sensor utilizes functionalized single-walled carbon nanotubes (SWCNTs) with short ssDNA strands immobilized through EDC-NHS coupling, placed between non-planar interdigitated electrodes. The detection [...] Read more.
This study presents a fully automated microfluidic electrochemical sensor for the detection of single-stranded DNA (ssDNA) on the ESSENCE platform. The sensor utilizes functionalized single-walled carbon nanotubes (SWCNTs) with short ssDNA strands immobilized through EDC-NHS coupling, placed between non-planar interdigitated electrodes. The detection process involves sequential flow of a background electrolyte and redox probe through the microfluidic channel before introducing the target DNA solution. The same solution is then circulated to enhance selectivity by removing non-specifically bound targets. Electrochemical impedance signals are acquired after the initial and final flow steps, utilizing changes in impedance spectra to quantify target DNA concentration. To streamline complex flow steps and eliminate manual interventions, the system integrates a fully automated fluid control system with syringe pumps, valves, and pressure sensors. Electrochemical impedance spectroscopy (EIS) data is acquired using the Analog Discovery 2 USB oscilloscope, and LabVIEW automation ensures a seamless transition from sample introduction to data acquisition. The transducer material’s flow-through design enables efficient differentiation between different degrees of base pair mismatches, extending applicability to single nucleotide polymorphisms. The system exhibits high sensitivity, detecting single-stranded DNA at concentrations as low as 1 fM within a rapid 15-min detection time. Its compact design and automated data acquisition make it a promising candidate for point-of-care biomolecule sensing, including antigens and toxins. Future applications involve functionalizing SWCNTs with relevant antibodies to enhance the platform’s capabilities for detecting a diverse range of target molecules in clinical settings. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
11 pages, 251 KiB  
Brief Report
A Moderate Decrease in ADAMTS13 Activity Correlates with the Severity of STEC-HUS
by Khadizha M. Emirova, Olga M. Orlova, Ekaterina M. Chichuga, Alexander L. Muzurov, Piotr P. Avdonin and Pavel V. Avdonin
Biomolecules 2023, 13(11), 1671; https://doi.org/10.3390/biom13111671 - 20 Nov 2023
Cited by 1 | Viewed by 1810
Abstract
Atypical hemolytic uremic syndrome (HUS) develops as a result of damage to the endothelium of microvasculature vessels by Shiga toxin produced by enterohemorrhagic Escherichia coli (STEC-HUS). STEC-HUS remains the leading cause of acute kidney injury (AKI) in children aged 6 months to 5 [...] Read more.
Atypical hemolytic uremic syndrome (HUS) develops as a result of damage to the endothelium of microvasculature vessels by Shiga toxin produced by enterohemorrhagic Escherichia coli (STEC-HUS). STEC-HUS remains the leading cause of acute kidney injury (AKI) in children aged 6 months to 5 years. The pathomorphological essence of the disease is the development of thrombotic microangiopathy (TMA). One of the key causes of TMA is an imbalance in the ADAMTS13–von Willebrand factor (vWF)–platelet system. The goal of the work was to clarify the role of a moderate decrease in ADAMTS13 activity in the pathogenesis of STEC-HUS. The activity of ADAMTS13 was determined in 138 children (4 months–14.7 years) in the acute period of STEC-HUS and the features of the course of the disease in these patients were analyzed. The study revealed a decrease in the activity and concentration of ADAMTS13 in 79.8% and 90.6% of patients, respectively. Measurements of von Willebrand factor antigen content and the activity of von Willebrand factor in the blood plasma of part of these patients were carried out. In 48.6% and 34.4% of cases, there was an increase in the antigen concentration and the activity of the Willebrand factor, respectively. Thrombocytopenia was diagnosed in 97.8% of children. We have demonstrated that moderately reduced ADAMTS13 activity correlates with the risk of severe manifestations of STEC-HUS in children; the rate of developing multiple organ failure, cerebral disorders, pulmonary edema, and acute kidney injury with the need for dialysis increases. It is assumed that reduction in ADAMTS13 activity may serve as a predictor of disease severity. Full article
19 pages, 743 KiB  
Review
Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations
by Rolf Teschke
Int. J. Mol. Sci. 2023, 24(7), 6663; https://doi.org/10.3390/ijms24076663 - 3 Apr 2023
Cited by 12 | Viewed by 2820
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using [...] Read more.
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention. Full article
(This article belongs to the Special Issue Molecular Toxicity of Drugs in Human and Animal Organs)
Show Figures

Figure 1

19 pages, 14741 KiB  
Perspective
Changing Landscape of Cancer Vaccines—Novel Proteomics Platform for New Antigen Compositions
by Petr G. Lokhov, Steven Lichtenberg and Elena E. Balashova
Int. J. Mol. Sci. 2022, 23(8), 4401; https://doi.org/10.3390/ijms23084401 - 15 Apr 2022
Cited by 2 | Viewed by 3888
Abstract
The creation of cancer vaccines is a constant priority for research and biotechnology. Therefore, the emergence of any new technology in this field is a significant event, especially because previous technologies have not yielded results. Recently, the development of a cancer vaccine has [...] Read more.
The creation of cancer vaccines is a constant priority for research and biotechnology. Therefore, the emergence of any new technology in this field is a significant event, especially because previous technologies have not yielded results. Recently, the development of a cancer vaccine has been complemented by a new proteomics technology platform that allows the creation of antigen compositions known as antigenic essences. Antigenic essence comprises a target fraction of cellular antigens, the composition of which is precisely controlled by peptide mass spectrometry and compared to the proteomic footprint of the target cells to ensure similarity. This proteomics platform offers potential for a massive upgrade of conventional cellular cancer vaccines. Antigenic essences have the same mechanism of action, but without the disadvantages, and with notable advantages such as precise targeting of the immune response, safety, controlled composition, improved immunogenicity, addressed MHC restriction, and extended range of vaccination doses. The present paper calls attention to this novel platform, stimulates discussion of the role of antigenic essence in vaccine development, and consolidates academic science with biotech capabilities. A brief description of the platform, list of cellular cancer vaccines suitable for the upgrade, main recommendations, limitations, and legal and ethical aspects of vaccine upgrade are reported here. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Cancers)
Show Figures

Figure 1

14 pages, 3015 KiB  
Review
Antigenic Essence: Upgrade of Cellular Cancer Vaccines
by Petr G. Lokhov and Elena E. Balashova
Cancers 2021, 13(4), 774; https://doi.org/10.3390/cancers13040774 - 12 Feb 2021
Cited by 9 | Viewed by 10142
Abstract
The development of anticancer immunotherapy is characterized by several approaches, the most recognized of which include cellular vaccines, tumor-associated antigens (TAAs), neoantigens, and chimeric antigen receptor T cells (CAR-T). This paper presents antigenic essence technology as an effective means for the production of [...] Read more.
The development of anticancer immunotherapy is characterized by several approaches, the most recognized of which include cellular vaccines, tumor-associated antigens (TAAs), neoantigens, and chimeric antigen receptor T cells (CAR-T). This paper presents antigenic essence technology as an effective means for the production of new antigen compositions for anticancer vaccination. This technology is developed via proteomics, cell culture technology, and immunological assays. In terms of vaccine development, it does not fit into any of the above-noted approaches and can be considered a new direction. Here we review the development of this technology, its main characteristics, comparison with existing approaches, and the features that distinguish it as a novel approach to anticancer vaccination. This review will also highlight the benefits of this technology over other approaches, such as the ability to control composition, optimize immunogenicity and similarity to target cells, and evade major histocompatibility complex restriction. The first antigenic essence products, presented under the SANTAVAC brand, are also described. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

12 pages, 2482 KiB  
Article
A Liposome-Based Approach to the Integrated Multi-Component Antigen Microarrays
by Denong Wang
Microarrays 2015, 4(4), 618-629; https://doi.org/10.3390/microarrays4040618 - 20 Nov 2015
Viewed by 4997
Abstract
This report describes an experimental procedure for constructing integrated lipid, carbohydrate, and protein microarrays. In essence, it prints liposomes on nitrocellulose-coated micro-glass slides, a biochip substrate for spotting protein and carbohydrate microarrays, and the substances that can form liposomes (homo-liposomes) or [...] Read more.
This report describes an experimental procedure for constructing integrated lipid, carbohydrate, and protein microarrays. In essence, it prints liposomes on nitrocellulose-coated micro-glass slides, a biochip substrate for spotting protein and carbohydrate microarrays, and the substances that can form liposomes (homo-liposomes) or can be incorporated into liposomes (hetero-liposomes) are suitable for microarray construction using existing microarray spotting devices. Importantly, this technology allows simultaneous detection of serum antibody activities among the three major classes of antigens, i.e., lipids, carbohydrates, and proteins. The potential of this technology is illustrated by its use in revealing a broad-spectrum of pre-existing anti-lipid antibodies in blood circulation and monitoring the epitope spreading of autoantibody reactivities among protein, carbohydrate, and lipid antigens in experimental autoimmune encephalomyelitis (EAE). Full article
Show Figures

Graphical abstract

Back to TopTop