Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = antifreeze liquid cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 697 KB  
Article
The In Vitro Evaluation of Rooster Semen Pellets Frozen with Dimethylacetamide
by Shaimaa K. Hamad, Ahmed M. Elomda, Yanyan Sun, Yunlei Li, Yunhe Zong, Jilan Chen, Ahmed O. Abbas, Farid K. R. Stino, Ali Nazmi and Gamal M. K. Mehaisen
Animals 2023, 13(10), 1603; https://doi.org/10.3390/ani13101603 - 11 May 2023
Cited by 6 | Viewed by 2874
Abstract
Sperm cryopreservation is an effective technique for conserving animal genetic diversity and transmitting superior genetic backgrounds, maintained via a non-invasive sampling and collection of huge quantities of sperm. Nevertheless, cryopreservation in avian species is not commercially viable because of the rooster sperm’s susceptibility [...] Read more.
Sperm cryopreservation is an effective technique for conserving animal genetic diversity and transmitting superior genetic backgrounds, maintained via a non-invasive sampling and collection of huge quantities of sperm. Nevertheless, cryopreservation in avian species is not commercially viable because of the rooster sperm’s susceptibility to damage. This study aims to estimate the impact of dimethylacetamide (DMA) as a cryoprotectant at different levels (3%, 6%, or 9%) on the post-thawed sperm quality, motility, antioxidant-biomarkers, and the expression of anti-freeze related genes. Semen samples were collected twice a week from twelve roosters aged 40 wk, weighing 3400 ± 70 g, and belonging to the Cairo-B2 chicken strain. Fresh semen samples were rapidly appraised, pooled, diluted with two volumes of a basic extender, and divided equally into three groups. The diluted groups were chilled at −20 °C for 7 min, then gently supplemented with 3, 6, or 9% pre-cooled DMA and equilibrated at 5 °C for a further 10 min. Semen pellets were formed by pipetting drops 7 cm above liquid nitrogen (LN2), which were then kept inside cryovials in the LN2. Thawing was performed 2 months later by taking 3–4 pellets of the frozen semen into a glass tube and warming it in a water bath for 8 s at 60 °C. The results showed that 3% DMA increased the proportion of total motile sperm, progressivity, viability, and plasma membrane integrity (%) compared to the 6% and 9% DMA groups. The lipid peroxidation and antioxidant enzyme activity were improved in the 3% group. At the same time, some anti-freeze-related genes’ (including ras homolog family member A (RHOA), heat shock protein 70 (HSP70), and small nuclear ribonucleoprotein polypeptide A (SNRPA1)) expressions were upregulated within the 3% DMA group relative to other groups. In conclusion, the 3% DMA group maintained higher post-thawed sperm quality than the other tested groups. Full article
Show Figures

Figure 1

14 pages, 3886 KB  
Article
Study on Heat Transfer Performance of Antifreeze-R134a Heat Exchanger (ARHEx)
by Liping Pang, Kun Luo, Shizhao Yu, Desheng Ma, Miao Zhao and Xiaodong Mao
Energies 2020, 13(22), 6129; https://doi.org/10.3390/en13226129 - 23 Nov 2020
Cited by 1 | Viewed by 2753
Abstract
In this paper, the liquid cooling and vapor compression refrigeration system based on an Antifreeze-R134a Heat Exchanger (ARHEx) was applied to the thermal management system for high-power avionics in helicopters. The heat transfer performance of the ARHEx was studied. An experimental prototype of [...] Read more.
In this paper, the liquid cooling and vapor compression refrigeration system based on an Antifreeze-R134a Heat Exchanger (ARHEx) was applied to the thermal management system for high-power avionics in helicopters. The heat transfer performance of the ARHEx was studied. An experimental prototype of ARHEx was designed and established. A series of experiments was carried out with a ground experimental condition. A heat transfer formula for the antifreeze side in the ARHEx was obtained by means of the coefficient of Nusselt number with experimental analysis. The performance of heat transfer and pressure drop for the refrigerant side of the ARHEx was deduced for the given condition. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

26 pages, 7233 KB  
Article
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration
by Miao Zhao, Liping Pang, Meng Liu, Shizhao Yu and Xiaodong Mao
Energies 2020, 13(9), 2177; https://doi.org/10.3390/en13092177 - 1 May 2020
Cited by 16 | Viewed by 4937
Abstract
With the continuous application of high-power electronic equipment in aircraft, highly efficient heat transfer technology has been emphasized for airborne applications. In this paper, a thermal management system based on an antifreeze liquid cooling loop and a vapor compression refrigeration loop is presented [...] Read more.
With the continuous application of high-power electronic equipment in aircraft, highly efficient heat transfer technology has been emphasized for airborne applications. In this paper, a thermal management system based on an antifreeze liquid cooling loop and a vapor compression refrigeration loop is presented for high-power airborne equipment in a helicopter. The simulation models of the thermal management system are built in order to study its control strategy for the changing flight conditions. The antifreeze-refrigerant evaporator and air-refrigerant condenser are specially validated with the experimental data. A dual feedforward proportion integration differentiation and expert control algorithm are adopted in the inlet temperature of the cold plate and sub-cooling control of the refrigerant by regulating the compressor speed and the fan speed, respectively. A preheating strategy for antifreeze is set up to decrease its flow resistance in cold day conditions. The control strategy for the thermal management system is finally built based on the above control methods. In this paper, two extreme conditions are discussed, including cold and hot days. Both the simulation results show that the superheated, sub-cooling and antifreeze inlet temperature of the cold plate can be controlled at 3 to8 °C, −10 to −3 °C and 18 to22 °C, respectively. Under the same changing flight envelope, the coefficient of performance of the vapor compression refrigeration loop is relatively stable on the cold day, which is about 6, while it has a range of 2.58–4.9 on the hot day. Full article
Show Figures

Graphical abstract

Back to TopTop