Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = anti-leakage Fourier transform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 24707 KiB  
Article
Anti-Aliasing and Anti-Leakage Frequency–Wavenumber Filtering Method for Linear Noise Suppression in Irregular Coarse Seismic Data
by Shengqiang Mu, Liang Huang, Liying Ren, Guoxu Shu and Xueliang Li
Minerals 2025, 15(2), 107; https://doi.org/10.3390/min15020107 - 23 Jan 2025
Viewed by 1226
Abstract
Linear noise, a significant type of interference in exploration seismic data, adversely affects the signal-to-noise ratio (SNR) and imaging resolution. As seismic exploration advances, the constraints of the acquisition environment hinder the ability to acquire seismic data in a regular and dense manner, [...] Read more.
Linear noise, a significant type of interference in exploration seismic data, adversely affects the signal-to-noise ratio (SNR) and imaging resolution. As seismic exploration advances, the constraints of the acquisition environment hinder the ability to acquire seismic data in a regular and dense manner, complicating the suppression of linear noise. To address this challenge, we have developed an anti-aliasing and anti-leakage frequency–wavenumber (f-k) filtering method. This approach effectively mitigates issues of spatial aliasing and spectral leakage caused by irregular coarse data acquisition by integrating linear moveout correction and anti-leakage Fourier transform into traditional f-k filtering. The efficacy of our method was demonstrated through examples of linear noise suppression on both irregular coarse synthetic data and field seismic data. Full article
(This article belongs to the Special Issue Seismics in Mineral Exploration)
Show Figures

Figure 1

23 pages, 8070 KiB  
Article
Saponin-Derived Silver Nanoparticles from Phoenix dactylifera (Ajwa Dates) Exhibit Broad-Spectrum Bioactivities Combating Bacterial Infections
by Mohd Adnan, Arif Jamal Siddiqui, Syed Amir Ashraf, Mohammad Saquib Ashraf, Sarah Owdah Alomrani, Mousa Alreshidi, Bektas Tepe, Manojkumar Sachidanandan, Corina Danciu and Mitesh Patel
Antibiotics 2023, 12(9), 1415; https://doi.org/10.3390/antibiotics12091415 - 7 Sep 2023
Cited by 11 | Viewed by 3052
Abstract
The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). [...] Read more.
The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV–Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Antibiotics)
Show Figures

Figure 1

16 pages, 5211 KiB  
Article
Inhibitory Effect of Polypeptides Produced by Brevibacillus brevis on Ochratoxigenic Fungi in the Process of Pile-Fermentation of Post-Fermented Tea
by Zhenjun Zhao, Lingling Zhang, Yougen Lou, Yan Luo, Xianchun Hu, Xueli Pan, Huawei Wu, Jianjie Li, Huiling Mei and Xinghui Li
Foods 2022, 11(20), 3243; https://doi.org/10.3390/foods11203243 - 17 Oct 2022
Cited by 5 | Viewed by 2189
Abstract
Contamination by ochratoxigenic fungi and its prevention during the pile-fermentation of post-fermented tea have always been a concern. The present study aimed to elucidate the anti-fungal effect and mechanism of polypeptides produced by B. brevis DTM05 (isolated from post-fermented tea) on ochratoxigenic fungi, [...] Read more.
Contamination by ochratoxigenic fungi and its prevention during the pile-fermentation of post-fermented tea have always been a concern. The present study aimed to elucidate the anti-fungal effect and mechanism of polypeptides produced by B. brevis DTM05 (isolated from post-fermented tea) on ochratoxigenic fungi, and to to evaluate their use in the pile-fermentation process of post-fermented tea. The results showed that polypeptides (produced by B. brevis DTM05) with a strong antifungal effect against A. carbonarius H9 mainly had a molecular weight between 3 and 5 kDa. The Fourier-transform infrared spectra of this polypeptide extract showed that it was a mixture consisting mainly of polypeptides and small amounts of lipids and other carbohydrates. The polypeptide extracts significantly inhibited the growth of A. carbonarius H9, and its minimum inhibitory concentration (MIC) was 1.6 mg/L, which significantly reduced the survival rate of spores. The polypeptides also effectively controlled the occurrence and ochratoxin A (OTA) production of A. carbonarius H9 on the tea matrix. The lowest concentration of polypeptides that significantly inhibited the growth of A. carbonarius H9 on the tea matrix was 3.2 mg/L. The enhancement of the fluorescence staining signal in the mycelium and conidiospore showed that the polypeptides with a concentration of more than 1.6 mg/L increased the permeability of the mycelium membrane and conidial membrane of A. carbonarius H9. The significant increase in the extracellular conductivity of mycelia suggested the outward leakage of intracellular active substances, and also further indicated an increase in cell membrane permeability. Polypeptides with a concentration of 6.4 mg/L significantly down-regulated the expression level of the polyketide synthase gene related to OTA production (acpks) in A. carbonarius H9, which may be the fundamental reason why polypeptides affect OTA production. In conclusion, reasonable use of the polypeptides produced by B. brevis can destroy the structural integrity of the cell membrane, make the intracellular active substances leak outward, accelerate the death of fungal cells and down-regulate the expression level of the polyketide synthase gene in A. carbonarius; thus, they can effectively control the contamination of ochratoxigenic fungi and OTA production during the pile-fermentation of the post-fermented tea. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 2982 KiB  
Article
Pulmonary Targeting of Levofloxacin Using Microsphere-Based Dry Powder Inhalation
by Turki Al Hagbani, Bhavya Vishwa, Amr S. Abu Lila, Hadil Faris Alotaibi, El-Sayed Khafagy, Afrasim Moin and Devegowda V. Gowda
Pharmaceuticals 2022, 15(5), 560; https://doi.org/10.3390/ph15050560 - 30 Apr 2022
Cited by 11 | Viewed by 3886
Abstract
The objective of the current study was to develop poly (lactic-co-glycolic acid) (PLGA) microspheres loaded with the anti-tuberculosis (anti-TB) fluoroquinolone, Levofloxacin (LVX), in the form of dry powder inhalation (DPI). LVX-loaded microspheres were fabricated by solvent evaporation technique. Central Composite Design (CCD) was [...] Read more.
The objective of the current study was to develop poly (lactic-co-glycolic acid) (PLGA) microspheres loaded with the anti-tuberculosis (anti-TB) fluoroquinolone, Levofloxacin (LVX), in the form of dry powder inhalation (DPI). LVX-loaded microspheres were fabricated by solvent evaporation technique. Central Composite Design (CCD) was adopted to optimize the microspheres, with desired particle size, drug loading, and drug entrapment efficiency, for targeting alveolar macrophages via non-invasive pulmonary delivery. Structural characterization studies by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis revealed the absence of any possible chemical interaction between the drug and the polymer used for the preparation of microspheres. In addition, the optimized drug-loaded microspheres exhibited desired average aerodynamic diameter of 2.13 ± 1.24 μm and fine particle fraction of 75.35 ± 1.42%, indicating good aerosolization properties. In vivo data demonstrated that LVX-loaded microspheres had superior lung accumulation, as evident by a two-fold increase in the area under the curve AUC0–24h, as compared with plain LVX. Furthermore, LVX-loaded microspheres prolonged drug residence time in the lung and maintained a relatively high drug concentration for a longer time, which contributed to a reduced leakage in the systemic circulation. In conclusion, inhalable LVX-loaded microspheres might represent a plausible delivery vehicle for targeting pulmonary tuberculosis via enhancing the therapeutic efficacy of LVX while minimizing its systemic off-target side effects. Full article
(This article belongs to the Special Issue Drug Delivery to the Lungs: Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 3160 KiB  
Article
Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116
by Sangiliyandi Gurunathan, Muhammad Qasim, Chanhyeok Park, Hyunjin Yoo, Jin-Hoi Kim and Kwonho Hong
Int. J. Mol. Sci. 2018, 19(8), 2269; https://doi.org/10.3390/ijms19082269 - 2 Aug 2018
Cited by 151 | Viewed by 8419
Abstract
Silver nanoparticles (AgNPs) have gained attention for use in cancer therapy. In this study, AgNPs were biosynthesized using naringenin. We investigated the anti-colon cancer activities of biogenic AgNPs through transcriptome analysis using RNA sequencing, and the mechanisms of AgNPs in regulating colon cancer [...] Read more.
Silver nanoparticles (AgNPs) have gained attention for use in cancer therapy. In this study, AgNPs were biosynthesized using naringenin. We investigated the anti-colon cancer activities of biogenic AgNPs through transcriptome analysis using RNA sequencing, and the mechanisms of AgNPs in regulating colon cancer cell growth. The synthesized AgNPs were characterized using UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The AgNPs were spherical with sizes of 2–10 nm. Cytotoxicity assays indicated that the AgNPs in HCT116 colorectal cancer cells were very effective at low concentrations. The viability and proliferation of colon cancer cells treated with 5 µg/mL biogenic AgNPs were reduced by 50%. Increased lactate dehydrogenase leakage (LDH), reactive oxygen species (ROS) generation, malondialdehyde (MDA), and decreased dead-cell protease activity and ATP generation were observed. This impaired mitochondrial function and DNA damage led to cell death. The AgNPs upregulated and downregulated the most highly ranked biological processes of oxidation–reduction and cell-cycle regulation, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that AgNPs upregulated GADD45G in the p53 pathway. Thus, the AgNP tumor suppressive effects were mediated by cell apoptosis following DNA damage, as well as by mitochondrial dysfunction and cell-cycle arrest following aberrant regulation of p53 effector proteins. It is of interest to mention that, to the best of our knowledge, this study is the first report demonstrating cellular responses and molecular pathways analysis of AgNPs in HCT116 colorectal cancer cells. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop