Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = anti-adhesive/anti-biofilm agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 589 KiB  
Review
Biofilm Formation and the Role of Efflux Pumps in ESKAPE Pathogens
by Trent R. Sorenson, Kira M. Zack and Suresh G. Joshi
Microorganisms 2025, 13(8), 1816; https://doi.org/10.3390/microorganisms13081816 - 4 Aug 2025
Viewed by 162
Abstract
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led [...] Read more.
Nosocomial infections caused by ESKAPE pathogens represent a significant burden to global health. These pathogens may exhibit multidrug resistance (MDR) mechanisms, of which mechanisms such as efflux pumps and biofilm formation are gaining significant importance. Multidrug resistance mechanisms in ESKAPE pathogens have led to an increase in the effective costs in health care and a higher risk of mortality in hospitalized patients. These pathogens utilize antimicrobial efflux pump mechanisms and bacterial biofilm-forming capabilities to escape the bactericidal action of antimicrobials. ESKAPE bacteria forming colonies demonstrate increased expression of efflux pump-encoding genes. Efflux pumps not only expel antimicrobial agents but also contribute to biofilm formation by bacteria through (1) transport of molecules and transcription factors involved in biofilm quorum sensing, (2) bacterial fimbriae structure transport for biofilm adhesion to surfaces, and (3) regulation of a transmembrane gradient to survive the difficult conditions of biofilm microenvironments. The synergistic role of these mechanisms complicates treatment outcomes. Given the mechanistic link between biofilms and efflux pumps, therapeutic strategies should focus on targeting anti-biofilm mechanisms alongside efflux pump inactivation with efflux pump inhibitors. This review explores the molecular interplay between efflux pumps and biofilm formation, emphasizing potential therapeutic strategies such as efflux pump inhibitors (EPIs) and biofilm-targeting agents. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 - 1 Aug 2025
Viewed by 137
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

30 pages, 2010 KiB  
Review
Functional Versatility of Vibrio cholerae Outer Membrane Proteins
by Annabelle Mathieu-Denoncourt and Marylise Duperthuy
Appl. Microbiol. 2025, 5(3), 64; https://doi.org/10.3390/applmicrobiol5030064 - 3 Jul 2025
Viewed by 955
Abstract
A key feature that differentiates Gram-positive and Gram-negative bacteria is the outer membrane, an asymmetric membrane composed of lipopolysaccharides, phospholipids, lipoproteins and integral proteins, including the outer-membrane proteins (OMPs). By being in direct contact with the extracellular milieu, the outer membrane and OMPs [...] Read more.
A key feature that differentiates Gram-positive and Gram-negative bacteria is the outer membrane, an asymmetric membrane composed of lipopolysaccharides, phospholipids, lipoproteins and integral proteins, including the outer-membrane proteins (OMPs). By being in direct contact with the extracellular milieu, the outer membrane and OMPs participate in multiple functions in Gram-negative bacteria, including controlling nutrient and molecule access to the cytoplasm, membrane vesicle formation and resistance to environmental stresses. OMPs have a characteristic barrel shape formed by antiparallel β-strands, with or without channels that allow diffusion of substrates through the outer membrane. The marine bacterium Vibrio cholerae is responsible for non-invasive gastroenteritis and cholera disease by consumption of contaminated water or food. Its OMPs, besides having a porin function, contribute to resistance to osmotic pressure and antimicrobial agents, intracellular signaling, adhesion to host cells and biofilm formation, amongst other functions. In this review, in addition to quickly reviewing the general structure of the outer membrane, the OMPs and how they reach the outer membrane, the functions attributed to these proteins are compiled. The mechanisms used by each of the described OMP to accomplish these functions in the marine pathogenic bacterium V. cholerae are discussed. Potential clinical and bioengineering applications of OMPs, such as diagnostic tools, vaccine development, and targeted antimicrobial or anti-virulence strategies are presented. What is known about the OMPs of V. cholerae is presented below. Full article
Show Figures

Graphical abstract

26 pages, 905 KiB  
Review
Advancements in Antimicrobial Surface Coatings Using Metal/Metaloxide Nanoparticles, Antibiotics, and Phytochemicals
by Preetha Ebenezer, S. P. S. N. Buddhika Sampath Kumara, S. W. M. A. Ishantha Senevirathne, Laura J. Bray, Phurpa Wangchuk, Asha Mathew and Prasad K. D. V. Yarlagadda
Nanomaterials 2025, 15(13), 1023; https://doi.org/10.3390/nano15131023 - 1 Jul 2025
Viewed by 446
Abstract
The growing prevalence of bacterial infections and the alarming rise of antimicrobial resistance (AMR) have driven the need for innovative antimicrobial coatings for medical implants and biomaterials. However, implant surface properties, such as roughness, chemistry, and reactivity, critically influence biological interactions and must [...] Read more.
The growing prevalence of bacterial infections and the alarming rise of antimicrobial resistance (AMR) have driven the need for innovative antimicrobial coatings for medical implants and biomaterials. However, implant surface properties, such as roughness, chemistry, and reactivity, critically influence biological interactions and must be engineered to ensure biocompatibility, corrosion resistance, and sustained antibacterial activity. This review evaluates three principal categories of antimicrobial agents utilized in surface functionalization: metal/metaloxide nanoparticles, antibiotics, and phytochemical compounds. Metal/metaloxide-based coatings, especially those incorporating silver (Ag), zinc oxide (ZnO), and copper oxide (CuO), offer broad-spectrum antimicrobial efficacy through mechanisms such as reactive oxygen species (ROS) generation and bacterial membrane disruption, with a reduced risk of resistance development. Antibiotic-based coatings enable localized drug delivery but often face limitations related to burst release, cytotoxicity, and diminishing effectiveness against multidrug-resistant (MDR) strains. In contrast, phytochemical-derived coatings—using bioactive plant compounds such as curcumin, eugenol, and quercetin—present a promising, biocompatible, and sustainable alternative. These agents not only exhibit antimicrobial properties but also provide anti-inflammatory, antioxidant, and osteogenic benefits, making them multifunctional tools for implant surface modification. The integration of these antimicrobial strategies aims to reduce bacterial adhesion, inhibit biofilm formation, and enhance tissue regeneration. By leveraging the synergistic effects of metal/metaloxide nanoparticles, antibiotics, and phytochemicals, next-generation implant coatings hold the potential to significantly improve infection control and clinical outcomes in implant-based therapies. Full article
(This article belongs to the Special Issue Nanocoating for Antibacterial Applications)
Show Figures

Graphical abstract

22 pages, 2199 KiB  
Article
Antifungal Activity of 5-Fluorouridine Against Candida albicans and Candida parapsilosis Based on Virulence Reduction
by Ewa Lenarczyk, Damian Oleksiak and Monika Janeczko
Molecules 2025, 30(13), 2735; https://doi.org/10.3390/molecules30132735 - 25 Jun 2025
Viewed by 404
Abstract
This study aims to explore the potential repurposing of 5-fluorouridine (5-FUrd) as an antifungal agent against Candida species. We evaluated the responses of nine reference species of Candida spp. and one hundred clinical isolates of C. albicans to 5-FUrd using the broth microdilution [...] Read more.
This study aims to explore the potential repurposing of 5-fluorouridine (5-FUrd) as an antifungal agent against Candida species. We evaluated the responses of nine reference species of Candida spp. and one hundred clinical isolates of C. albicans to 5-FUrd using the broth microdilution method. Additionally, we assessed the effect of 5-FUrd on selected virulence factors, including biofilm formation, cell adhesion, dimorphism, hydrolase secretion, and hemolytic activity, in the two most sensitive Candida species, C. albicans and C. parapsilosis. The frequency of spontaneous mutations occurring in these two Candida species under the influence of 5-FUrd was also determined. Finally, we examined the cytotoxic properties of 5-FUrd against human erythrocytes and zebrafish embryos. Our results demonstrated that 5-FUrd exhibits antifungal activity in vitro, inhibits biofilm formation, suppresses hyphal growth, reduces cell surface hydrophobicity, eradicates mature biofilms, and decreases the secretion of extracellular proteinases and hemolytic activity in C. albicans and C. parapsilosis cells. The overall mutation frequency under the selective pressure of 5-FUrd ranged from 2 × 10−5 to 1.2 × 10−4 per species. Notably, the exposure to 5-FUrd did not induce significant toxic effects on human erythrocytes or zebrafish embryos. This study highlights the potential clinical application of 5-FUrd as an anti-Candida agent. Full article
Show Figures

Figure 1

27 pages, 6418 KiB  
Review
Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications
by Jiageng Guo, Xinya Jiang, Yu Tian, Shidu Yan, Jiaojiao Liu, Jinling Xie, Fan Zhang, Chun Yao and Erwei Hao
Pharmaceuticals 2024, 17(12), 1700; https://doi.org/10.3390/ph17121700 - 17 Dec 2024
Cited by 7 | Viewed by 5381
Abstract
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical [...] Read more.
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil. Research indicates that cinnamon oil possesses a wide range of pharmacological activities, covering antibacterial, anti-inflammatory, anti-tumor, and hypoglycemic effects. It is currently an active ingredient in over 500 patented medicines. Cinnamon oil has demonstrated significant inhibitory effects against various pathogens comprising Staphylococcus aureus, Salmonella, and Escherichia coli. Its mechanisms of action include disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, suggesting its potential as a natural antimicrobial agent. Its anti-inflammatory properties are evidenced by its ability to suppress inflammatory markers like vascular cell adhesion molecules and macrophage colony-stimulating factors. Moreover, cinnamon oil has shown positive effects in lowering blood pressure and improving metabolism in diabetic patients by enhancing glucose uptake and increasing insulin sensitivity. The main active components of cinnamon oil include cinnamaldehyde, cinnamic acid, and eugenol, which play key roles in its pharmacological effects. Recently, the applications of cinnamon oil in industrial fields, including food preservation, cosmetics, and fragrances, have also become increasingly widespread. Despite the extensive research supporting its medicinal value, more clinical trials are needed to determine the optimal dosage, administration routes, and possible side effects of cinnamon oil. Additionally, exploring the interactions between cinnamon oil and other drugs, as well as its safety in different populations, is crucial. Considering the current increase in antibiotic resistance and the demand for sustainable and effective medical treatments, this review emphasizes the necessity for further research into the mechanisms and safety of cinnamon oil to confirm its feasibility as a basis for new drug development. In summary, as a versatile natural product, cinnamon oil holds broad application prospects and is expected to play a greater role in future medical research and clinical practice. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

19 pages, 8386 KiB  
Article
Eradication of Biofilms on Catheters: Potentials of Tamarix ericoides Rottl. Bark Coating in Preventing Catheter-Associated Urinary Tract Infections (CAUTIs)
by Mohammed H. Karrar Alsharif, Muhammad Musthafa Poyil, Salman Bin Dayel, Mohammed Saad Alqahtani, Ahmed Abdullah Albadrani, Zainab Mohammed M. Omar, Abdullah MR. Arafah, Tarig Gasim Mohamed Alarabi, Reda M. Fayyad and Abd El-Lateef Saeed Abd El-Lateef
Life 2024, 14(12), 1593; https://doi.org/10.3390/life14121593 - 3 Dec 2024
Cited by 1 | Viewed by 1338
Abstract
Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to [...] Read more.
Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to prevent biofilms on catheter surfaces. As a trial to find out such a potential agent of natural origin, the bark of Tamarix ericoides Rottl., a little-known plant from the Tamaricaceae family, was examined for its antibacterial and antibiofilm activities against one of the major, virulent, CAUTI-causing bacterial pathogens: Enterococcus faecalis. The methanolic T. ericoides bark extract was analyzed for its antibacterial activity using the well diffusion method and microdilution method. Killing kinetics were calculated using time–kill assay, and the ability of biofilm formation and its eradication upon treatment with the T. ericoides bark extract was studied by crystal violet assay. GC-MS analysis was performed to understand the phytochemical presence in the extract. A in vitro bladder model study was performed using extract-coated catheters against E. faecalis, and the effect was visualized using CLSM. The changes in the cell morphology of the bacterium after treatment with the T. ericoides bark extract were observed using SEM. The biocompatibility of the extract towards L929 cells was studied by MTT assay. The anti-E. faecalis activity of the extract-coated catheter tube was quantified by viable cell count method, which exposed 20% of growth after five days of contact with E. faecalis. The anti-adhesive property of the T. ericoides bark extract was studied using CLSM. The extract showed potential antibacterial activity, and the lowest inhibitory concentration needed to inhibit the growth of E. faecalis was found to be 2 mg/mL. The GC-MS analysis of the methanolic fractions of the T. ericoides bark extract revealed the presence of major phytochemicals, such as diethyl phthalate, pentadecanoic acid, methyl 6,11-octadecadienoate, cyclopropaneoctanoic acid, 2-[(2-pentylcyclopropyl) methyl]-, methyl ester, erythro-7,8-bromochlorodisparlure, etc., that could be responsible for the antibacterial activity against E. faecalis. The killing kinetics of the extract against E. faecalis was calculated and the extract showed promising antibiofilm activity on polystyrene surfaces. The T. ericoides bark extract effectively reduced the E. faecalis mature biofilms by 75%, 82%, and 83% after treatment with 1X MIC (2 mg/mL), 2X MIC (4 mg/mL), and 3X MIC (6 mg/mL) concentrations, respectively, which was further confirmed by SEM analysis. The anti-adhesive property of the T. ericoides bark extract studied using CLSM revealed a reduction in the biofilm thickness, and the FDA and PI combination revealed the death of 80% of the cells on the extract-coated catheter tube. In addition, SEM analysis showed extensive damage to the E. faecalis cells after the T. ericoides bark extract treatment, and it was not cytotoxic. Hence, after further studies, T. ericoides bark extract with potential antibacterial, antibiofilm, and anti-adhesive activities can be developed as an alternative agent for treating CAUTIs. Full article
Show Figures

Figure 1

20 pages, 4584 KiB  
Article
Almond Hull Extract Valorization: From Waste to Food Recovery to Counteract Staphylococcus aureus and Escherichia coli in Formation and Mature Biofilm
by Sara D’Arcangelo, Debora Santonocito, Luciano Messina, Valentina Greco, Alessandro Giuffrida, Carmelo Puglia, Mara Di Giulio, Rosanna Inturri and Susanna Vaccaro
Foods 2024, 13(23), 3834; https://doi.org/10.3390/foods13233834 - 28 Nov 2024
Cited by 3 | Viewed by 1469
Abstract
The increase in food waste accumulation needs innovative valorization strategies that not only reduce environmental impacts but also provide functional applications. This study investigates the potential of almond hulls, an abundant agricultural by-product, as a source of bioactive compounds. For the first time, [...] Read more.
The increase in food waste accumulation needs innovative valorization strategies that not only reduce environmental impacts but also provide functional applications. This study investigates the potential of almond hulls, an abundant agricultural by-product, as a source of bioactive compounds. For the first time, almond hull extract (AHE), was evaluated in terms of anti-adhesive and anti-biofilm activity against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 9637. The extract was obtained by an optimized eco-friendly green technique using ultrasound-assisted extraction (UAE), and it was characterized for its main compounds by high-performance liquid chromatography–mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis. Antimicrobial activity was evaluated on planktonic cells by minimum inhibitory/bactericidal concentration (MIC/MBC) and by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. Afterward, AHE activity was evaluated against the bacterial sessile phase, both against in-formation and mature biofilm. Finally, the toxicity of the extract was tested on normal human adult cells (HDFa) by an MTT test. The principal active compounds present in AHE belong to the polyphenol group, in particular, the phenolic acid (Hydroxycinnammic sub-class) and, more significantly, the flavonoid class. The results showed that the extract has a relevant antimicrobial activity against the planktonic cells of both tested strains. Moreover, it significantly inhibited bacterial adhesion and promoted biofilm removal, highlighting its potential as a sustainable antimicrobial agent. The MTT test on human fibroblasts showed that the extract is not toxic for normal human cells. This research highlights how food waste valorization could have a high potential in the antimicrobial field. Full article
Show Figures

Graphical abstract

22 pages, 1048 KiB  
Review
Recent Progress in Terrestrial Biota-Derived Anti-Biofilm Agents for Medical Applications
by Todorka G. Vladkova, Younes Smani, Boris L. Martinov and Dilyana N. Gospodinova
Appl. Microbiol. 2024, 4(3), 1362-1383; https://doi.org/10.3390/applmicrobiol4030094 - 18 Sep 2024
Cited by 2 | Viewed by 2033
Abstract
The terrestrial biota is a rich source of biologically active substances whose anti-biofilm potential is not studied enough. The aim of this review is to outline a variety of terrestrial sources of antimicrobial agents with the ability to inhibit different stages of biofilm [...] Read more.
The terrestrial biota is a rich source of biologically active substances whose anti-biofilm potential is not studied enough. The aim of this review is to outline a variety of terrestrial sources of antimicrobial agents with the ability to inhibit different stages of biofilm development, expecting to give some ideas for their utilization in improved anti-biofilm treatments. It provides an update for the last 5 years on anti-biofilm plant products and derivatives, essential oils, antimicrobial peptides, biosurfactants, etc., that are promising candidates for providing novel alternative approaches to combating multidrug-resistant biofilm-associated infections. Based on the reduction in bacterial adhesion to material and cell surfaces, the anti-adhesion strategy appears interesting for the prevention of bacterial attachment in combating a broad range of mono- and multispecies bacterial biofilms. So far, few studies have been carried out in this direction. Anti-biofilm coatings made by or containing biologically active products from terrestrial biota have scarcely been studied although they are of significant interest for a reduction in infections associated with medical devices. Combination therapy with commercial antibiotics and natural products is accepted now as a promising base for future advances in anti-biofilm treatment. In vivo testing and clinical trials are necessary for clinical application. Full article
Show Figures

Figure 1

13 pages, 2547 KiB  
Article
Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari
by Jeonghoon Lee, Hyunchan Song and Kiyoung Kim
Antibiotics 2024, 13(5), 434; https://doi.org/10.3390/antibiotics13050434 - 12 May 2024
Cited by 2 | Viewed by 3097
Abstract
(1) Background: Although Candida albicans accounts for the majority of fungal infections, therapeutic options are limited and require alternative antifungal agents with new targets; (2) Methods: A biofilm formation assay with RPMI1640 medium was performed with Liriope muscari extract. A combination antifungal assay, [...] Read more.
(1) Background: Although Candida albicans accounts for the majority of fungal infections, therapeutic options are limited and require alternative antifungal agents with new targets; (2) Methods: A biofilm formation assay with RPMI1640 medium was performed with Liriope muscari extract. A combination antifungal assay, dimorphic transition assay, and adhesion assay were performed under the biofilm formation condition to determine the anti-biofilm formation effect. qRT-PCR analysis was accomplished to confirm changes in gene expression; (3) Results: L. muscari extract significantly reduces biofilm formation by 51.65% at 1.56 μg/mL use and therefore increases susceptibility to miconazole. L. muscari extract also inhibited the dimorphic transition of Candida; nearly 50% of the transition was inhibited when 1.56 μg/mL of the extract was treated. The extract of L. muscari inhibited the expression of genes related to hyphal development and extracellular matrix of 34.4% and 36.0%, respectively, as well as genes within the Ras1-cAMP-PKA, Cph2-Tec1, and MAP kinase signaling pathways of 25.58%, 7.1% and 15.8%, respectively, at 1.56 μg/mL of L. muscari extract treatment; (4) Conclusions: L. muscari extract significantly reduced Candida biofilm formation, which lead to induced antifungal susceptibility to miconazole. It suggests that L. muscari extract is a promising anti-biofilm candidate of Candida albicans since the biofilm formation of Candida albicans is an excellent target for candidiasis regulation. Full article
(This article belongs to the Special Issue Antibiofilm Activity against Multidrug-Resistant Pathogens)
Show Figures

Figure 1

34 pages, 3568 KiB  
Article
Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides
by Deborah L. Chance, Wei Wang, James K. Waters and Thomas P. Mawhinney
Microorganisms 2024, 12(4), 801; https://doi.org/10.3390/microorganisms12040801 - 16 Apr 2024
Viewed by 3228
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin [...] Read more.
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host–pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend. Full article
Show Figures

Figure 1

19 pages, 8343 KiB  
Article
Anti-Biofilm Activity of Assamsaponin A, Theasaponin E1, and Theasaponin E2 against Candida albicans
by Yuhong Chen, Ying Gao, Yifan Li and Junfeng Yin
Int. J. Mol. Sci. 2024, 25(7), 3599; https://doi.org/10.3390/ijms25073599 - 22 Mar 2024
Cited by 9 | Viewed by 1997
Abstract
Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their [...] Read more.
Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP–PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans. Full article
(This article belongs to the Special Issue Antifungal Drug Discovery: Progresses, Challenges, Opportunities)
Show Figures

Figure 1

19 pages, 5565 KiB  
Article
Deferiprone-Gallium-Protoporphyrin Chitogel Decreases Pseudomonas aeruginosa Biofilm Infection without Impairing Wound Healing
by Tahlia L. Kennewell, Hanif Haidari, Suzanne Mashtoub, Gordon S. Howarth, Catherine Bennett, Clare M. Cooksley, Peter John Wormald, Allison J. Cowin, Sarah Vreugde and Zlatko Kopecki
Materials 2024, 17(4), 793; https://doi.org/10.3390/ma17040793 - 7 Feb 2024
Cited by 3 | Viewed by 1860
Abstract
Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and [...] Read more.
Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and heme analogue Gallium-Protoporphyrin (GaPP) in a chitosan-dextran hydrogel (Chitogel) have previously been demonstrated to be effective against PAO1 and clinical isolates of P. aeruginosa in vitro. Moreover, this combination of these two agents has been shown to improve sinus surgery outcomes by quickly reducing bleeding and preventing adhesions. In this study, the efficacy of Def-GaPP Chitogel was investigated in a P. aeruginosa biofilm-infected wound murine model over 6 days. Two concentrations of Def-GaPP Chitogel were investigated: Def-GaPP high dose (10 mM Def + 500 µg/mL GaPP) and Def-GaPP low dose (5 mM Def + 200 µg/mL GaPP). The high-dose Def-GaPP treatment reduced bacterial burden in vivo from day 2, without delaying wound closure. Additionally, Def-GaPP treatment decreased wound inflammation, as demonstrated by reduced neutrophil infiltration and increased anti-inflammatory M2 macrophage presence within the wound bed to drive wound healing progression. Def-GaPP Chitogel treatment shows promising potential in reducing P. aeruginosa cutaneous infection with positive effects observed in the progression of wound healing. Full article
(This article belongs to the Special Issue Novel Antibacterial Materials and Coatings)
Show Figures

Figure 1

13 pages, 2464 KiB  
Review
Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits
by Patricia Puyol McKenna, Patrick J. Naughton, James S. G. Dooley, Nigel G. Ternan, Patrick Lemoine and Ibrahim M. Banat
Pharmaceuticals 2024, 17(1), 138; https://doi.org/10.3390/ph17010138 - 22 Jan 2024
Cited by 22 | Viewed by 7808
Abstract
The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating [...] Read more.
The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating the incidence of antibiotic-resistant pathogens encompass the potential use of biosurfactants. These surface-active agents comprise a group of unique amphiphilic molecules of microbial origin that are capable of interacting with the lipidic components of microorganisms. Biosurfactant interactions with different surfaces can affect their hydrophobic properties and as a result, their ability to alter microorganisms’ adhesion abilities and consequent biofilm formation. Unlike synthetic surfactants, biosurfactants present low toxicity and high biodegradability and remain stable under temperature and pH extremes, making them potentially suitable for targeted use in medical and pharmaceutical applications. This review discusses the development of biosurfactants in biomedical and therapeutic uses as antimicrobial and antibiofilm agents, in addition to considering the potential synergistic effect of biosurfactants in combination with antibiotics. Furthermore, the anti-cancer and anti-viral potential of biosurfactants in relation to COVID-19 is also discussed. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

17 pages, 4932 KiB  
Article
Hydroquinine Enhances the Efficacy of Contact Lens Solutions for Inhibiting Pseudomonas aeruginosa Adhesion and Biofilm Formation
by Sattaporn Weawsiangsang, Nontaporn Rattanachak, Sukunya Ross, Gareth M. Ross, Robert A. Baldock, Touchkanin Jongjitvimol and Jirapas Jongjitwimol
Antibiotics 2024, 13(1), 56; https://doi.org/10.3390/antibiotics13010056 - 5 Jan 2024
Cited by 2 | Viewed by 4393
Abstract
P. aeruginosa is one of the most common bacteria causing contact lens-related microbial keratitis (CLMK). Previous studies report that disinfecting solutions were ineffective in preventing biofilm formation. Solutions containing novel natural agents may be an excellent alternative for reducing the risk of CLMK. [...] Read more.
P. aeruginosa is one of the most common bacteria causing contact lens-related microbial keratitis (CLMK). Previous studies report that disinfecting solutions were ineffective in preventing biofilm formation. Solutions containing novel natural agents may be an excellent alternative for reducing the risk of CLMK. Here, we investigate the disinfecting properties of hydroquinine in combination with multipurpose solutions (MPSs) to prevent P. aeruginosa adhesion and biofilm formation. We examined the antibacterial, anti-adhesion, and anti-biofilm properties of hydroquinine-formulated MPSs compared to MPSs alone. Using RT-qPCR, hydroquinine directly affected the expression levels of adhesion-related genes, namely, cgrC, cheY, cheZ, fimU, and pilV, resulting in reduced adhesion and anti-biofilm formation. Using ISO 14729 stand-alone testing, hydroquinine met the criteria (>99.9% killing at disinfection time) against both P. aeruginosa reference and clinical strains. Using the crystal violet retention assay and FE-SEM, MPSs combined with hydroquinine were effective in inhibiting P. aeruginosa adhesion and destroying preexisting biofilms. This report is the first to highlight the potential utility of hydroquinine-containing formulations as a disinfecting solution for contact lenses, specifically for inhibiting adhesion and destroying biofilm. These findings may aid in the development of novel disinfectants aimed at combating P. aeruginosa, thereby potentially reducing the incidence of CLMK. Full article
(This article belongs to the Special Issue Discovery and Development of the Novel Antimicrobial Agent)
Show Figures

Figure 1

Back to TopTop