Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = anti-Fxase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2959 KB  
Article
Physicochemical Characteristics and Anticoagulant Activities of the Polysaccharides from Sea Cucumber Pattalus mollis
by Wenqi Zheng, Lutan Zhou, Lisha Lin, Ying Cai, Huifang Sun, Longyan Zhao, Na Gao, Ronghua Yin and Jinhua Zhao
Mar. Drugs 2019, 17(4), 198; https://doi.org/10.3390/md17040198 - 29 Mar 2019
Cited by 48 | Viewed by 9336
Abstract
Sulfated polysaccharides from sea cucumbers possess distinct chemical structure and various biological activities. Herein, three types of polysaccharides were isolated and purified from Pattalus mollis, and their structures and bioactivities were analyzed. The fucosylated glycosaminoglycan (PmFG) had a CS-like backbone composed of [...] Read more.
Sulfated polysaccharides from sea cucumbers possess distinct chemical structure and various biological activities. Herein, three types of polysaccharides were isolated and purified from Pattalus mollis, and their structures and bioactivities were analyzed. The fucosylated glycosaminoglycan (PmFG) had a CS-like backbone composed of the repeating units of {-4-d-GlcA-β-1,3-d-GalNAc4S6S-β-1-}, and branches of a sulfated α-l-Fuc (including Fuc2S4S, Fuc3S4S and Fuc4S with a molar ratio of 2:2.5:1) linked to O-3 of each d-GlcA. The fucan sulfate (PmFS) had a backbone consisting of a repetitively linked unit {-4-l-Fuc2S-α-1-}, and interestingly, every trisaccharide unit in its backbone was branched with a sulfated α-l-Fuc (Fuc4S or Fuc3S with a molar ratio of 4:1). Apart from the sulfated polysaccharides, two neutral glycans (PmNG-1 & -2) differing in molecular weight were also obtained and their structures were similar to animal glycogen. Anticoagulant assays indicated that PmFG and PmFS possessed strong APTT prolonging and intrinsic factor Xase inhibition activities, and the sulfated α-l-Fuc branches might contribute to the anticoagulant and anti-FXase activities of both PmFG and PmFS. Full article
(This article belongs to the Special Issue Marine Glycobiology, Glycomics and Lectins)
Show Figures

Figure 1

13 pages, 2313 KB  
Article
Precise Structure and Anticoagulant Activity of Fucosylated Glycosaminoglycan from Apostichopus japonicus: Analysis of Its Depolymerized Fragments
by Ruowei Guan, Yuan Peng, Lutan Zhou, Wenqi Zheng, Xixi Liu, Pin Wang, Qingxia Yuan, Na Gao, Longyan Zhao and Jinhua Zhao
Mar. Drugs 2019, 17(4), 195; https://doi.org/10.3390/md17040195 - 27 Mar 2019
Cited by 51 | Viewed by 9936
Abstract
Apostichopus japonicus is one of the most economically important species in sea cucumber aquaculture in China. Fucosylated glycosaminoglycan from A. japonicus (AjFG) has shown multiple pharmacological activities. However, results from studies on the structure of AjFG are still controversial. In this study, the [...] Read more.
Apostichopus japonicus is one of the most economically important species in sea cucumber aquaculture in China. Fucosylated glycosaminoglycan from A. japonicus (AjFG) has shown multiple pharmacological activities. However, results from studies on the structure of AjFG are still controversial. In this study, the deaminative depolymerization method that is glycosidic bond-selective was used to prepare the depolymerized products from AjFG (dAjFG), and then a series of purified oligosaccharide fragments such as tri-, hexa-, nona-, and dodecasaccharides were obtained from dAjFG by gel permeation chromatography. The 1D/2D NMR and ESI-MS spectrometry analyses showed that these oligosaccharides had the structural formula of l-FucS-α1,3-d-GlcA-β1,3-{d-GalNAc4S6S-β1,4-[l-FucS-α1,3-]d-GlcA-β1,3-}n-d-anTal-diol4S6S (n = 0, 1, 2, 3; FucS represents Fuc2S4S, Fuc3S4S, or Fuc4S). Thus, the unambiguous structure of native AjFG can be rationally deduced: it had the backbone of {-4-d-GlcA-β1,3-d-GalNAc4S6S-β1-}n, which is similar to chondroitin sulfate E, and each d-GlcA residue in the backbone was branched with a l-FucS monosaccharide at O-3. Bioactivity assays confirmed that dAjFG and nonasaccharides and dodecasaccharides from AjFG had potent anticoagulant activity by intrinsic FXase inhibition while avoiding side effects such as FXII activation and platelet aggregation. Full article
(This article belongs to the Special Issue Marine Molecules for the Treatment of Thrombosis)
Show Figures

Figure 1

Back to TopTop