Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = annular fissure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1329 KiB  
Article
Coexistence of Vertebral and Intervertebral Disc Changes in Low Back Pain Patients—In Depth Characterization with Same Day MRI and CT Discography
by Hanna Hebelka, Alfred Erkmar, Helena Brisby and Kerstin Lagerstrand
Diagnostics 2023, 13(23), 3528; https://doi.org/10.3390/diagnostics13233528 - 24 Nov 2023
Cited by 3 | Viewed by 1525
Abstract
The aim of this study was to investigate to what extent annular fissures, vertebral and endplate changes, and Modic changes (MCs), coexist in low back pain (LBP) patients by using multiple imaging modalities. Sixty-two LBP patients (mean age 45 years, range 24–63, 53% [...] Read more.
The aim of this study was to investigate to what extent annular fissures, vertebral and endplate changes, and Modic changes (MCs), coexist in low back pain (LBP) patients by using multiple imaging modalities. Sixty-two LBP patients (mean age 45 years, range 24–63, 53% men) were examined with same-day CT-discography and MRI. Intervertebral discs punctured for discography (n = 204) were evaluated on MRI [Pfirrmann grade, High-Intensity Zone (HIZ)] and on CT-discograms [Modified Dallas Discogram Score (DDS)]. DDS≥ 1, i.e., disc fissures involving the outer annulus were further digitomized into delimitable fissuring (<50% of annulus affected) or non-delimitable annular fissuring. Using both MRI and CT, adjacent vertebrae and endplates were assessed for MC, vertebral sclerosis, and a modified endplate defect score (EPS). In 194 discs the contrast agent was adequately injected during discography, of which 160 (83%) displayed outer annular fissures, with 91 (47%) of the latter being delimitable fissures. Most discs with delimitable fissures were moderately degenerated; 68% Pfirrmann grade ≤3, 71% EPS ≤ 2, and 12% displayed MC. The majority (76%) of MCs were associated with advanced adjacent disc degeneration; 84% Pfirrmann grade ≥4, 76% with non-delimitable annular fissuring, 59% EPS≥ 4, and 34% EPS of 3. A total 95 HIZ (47%) were found, of which 54 had delimitable fissuring, while the remainder displayed non-delimitable fissuring. Vertebral sclerosis was commonly observed (26%), both with MCs (73%) and without MCs (27%), and not specifically linked to MC type 3. A total of 97% of segments with vertebral sclerosis displayed outer annular fissures. These findings were significant (0.046 > p > 0.0001), except between HIZ and adjacent sclerosis (p = 0.303). To conclude, the present study confirmed a close interplay between the disc and adjacent vertebra and endplates. The fact that a majority of discs with delimitable annular fissures did not coexist with pronounced endplate changes and/or MCs, however, supports the theory that disc fissuring is an early event in the degenerative cascade. This was further supported by the fact that MCs were strongly linked to extensive disc fissuring and to advanced endplate damage. Further, vertebral sclerosis was common also in vertebra without MCs and strongly associated to annular fissuring, indicating that sclerosis is a previously underestimated feature of a general degenerative process. Full article
(This article belongs to the Special Issue Recent Advances in Bone and Joint Imaging—2nd Edition)
Show Figures

Figure 1

13 pages, 1736 KiB  
Article
Associations between Vertebral Localized Contrast Changes and Adjacent Annular Fissures in Patients with Low Back Pain: A Radiomics Approach
by Christian Waldenberg, Helena Brisby, Hanna Hebelka and Kerstin Magdalena Lagerstrand
J. Clin. Med. 2023, 12(15), 4891; https://doi.org/10.3390/jcm12154891 - 25 Jul 2023
Cited by 3 | Viewed by 1544
Abstract
Low back pain (LBP) is multifactorial and associated with various spinal tissue changes, including intervertebral disc fissures, vertebral pathology, and damaged endplates. However, current radiological markers lack specificity and individualized diagnostic capability, and the interactions between the various markers are not fully clear. [...] Read more.
Low back pain (LBP) is multifactorial and associated with various spinal tissue changes, including intervertebral disc fissures, vertebral pathology, and damaged endplates. However, current radiological markers lack specificity and individualized diagnostic capability, and the interactions between the various markers are not fully clear. Radiomics, a data-driven analysis of radiological images, offers a promising approach to improve evaluation and deepen the understanding of spinal changes related to LBP. This study investigated possible associations between vertebral changes and annular fissures using radiomics. A dataset of 61 LBP patients who underwent conventional magnetic resonance imaging followed by discography was analyzed. Radiomics features were extracted from segmented vertebrae and carefully reduced to identify the most relevant features associated with annular fissures. The results revealed three important texture features that display concentrated high-intensity gray levels, extensive regions with elevated gray levels, and localized areas with reduced gray levels within the vertebrae. These features highlight patterns within vertebrae that conventional classification systems cannot reflect on distinguishing between vertebrae adjacent to an intervertebral disc with or without an annular fissure. As such, the present study reveals associations that contribute to the understanding of pathophysiology and may provide improved diagnostics of LBP. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

13 pages, 2672 KiB  
Article
Detection of Imperceptible Intervertebral Disc Fissures in Conventional MRI—An AI Strategy for Improved Diagnostics
by Christian Waldenberg, Stefanie Eriksson, Helena Brisby, Hanna Hebelka and Kerstin Magdalena Lagerstrand
J. Clin. Med. 2023, 12(1), 11; https://doi.org/10.3390/jcm12010011 - 20 Dec 2022
Cited by 19 | Viewed by 2462
Abstract
Annular fissures in the intervertebral discs are believed to be closely related to back pain. However, no sensitive non-invasive method exists to detect annular fissures. This study aimed to propose and test a method capable of detecting the presence and position of annular [...] Read more.
Annular fissures in the intervertebral discs are believed to be closely related to back pain. However, no sensitive non-invasive method exists to detect annular fissures. This study aimed to propose and test a method capable of detecting the presence and position of annular fissures in conventional magnetic resonance (MR) images non-invasively. The method utilizes textural features calculated from conventional MR images combined with attention mapping and artificial intelligence (AI)-based classification models. As ground truth, reference standard computed tomography (CT) discography was used. One hundred twenty-three intervertebral discs in 43 patients were examined with MR imaging followed by discography and CT. The fissure classification model determined the presence of fissures with 100% sensitivity and 97% specificity. Moreover, the true position of the fissures was correctly determined in 90 (87%) of the analyzed discs. Additionally, the proposed method was significantly more accurate at identifying fissures than the conventional radiological high-intensity zone marker. In conclusion, the findings suggest that the proposed method is a promising diagnostic tool to detect annular fissures of importance for back pain and might aid in clinical practice and allow for new non-invasive research related to the presence and position of individual fissures. Full article
(This article belongs to the Special Issue Clinical Diagnosis and Treatment for Spinal Disorders)
Show Figures

Figure 1

13 pages, 1088 KiB  
Article
Using Natural Language Processing to Identify Low Back Pain in Imaging Reports
by Yeji Kim, Chanyoung Song, Gyuseon Song, Sol Bi Kim, Hyun-Wook Han and Inbo Han
Appl. Sci. 2022, 12(24), 12521; https://doi.org/10.3390/app122412521 - 7 Dec 2022
Cited by 3 | Viewed by 2115
Abstract
A natural language processing (NLP) pipeline was developed to identify lumbar spine imaging findings associated with low back pain (LBP) in X-radiation (X-ray), computed tomography (CT), and magnetic resonance imaging (MRI) reports. A total of 18,640 report datasets were randomly sampled (stratified by [...] Read more.
A natural language processing (NLP) pipeline was developed to identify lumbar spine imaging findings associated with low back pain (LBP) in X-radiation (X-ray), computed tomography (CT), and magnetic resonance imaging (MRI) reports. A total of 18,640 report datasets were randomly sampled (stratified by imaging modality) to obtain a balanced sample of 300 X-ray, 300 CT, and 300 MRI reports. A total of 23 radiologic findings potentially related to LBP were defined, and their presence was extracted from radiologic reports. In developing NLP pipelines, section and sentence segmentation from the radiology reports was performed using a rule-based method, including regular expression with negation detection. Datasets were randomly split into 80% for development and 20% for testing to evaluate the model’s extraction performance. The performance of the NLP pipeline was evaluated by using recall, precision, accuracy, and the F1 score. In evaluating NLP model performances, four parameters—recall, precision, accuracy, and F1 score—were greater than 0.9 for all 23 radiologic findings. These four scores were 1.0 for 10 radiologic findings (listhesis, annular fissure, disc bulge, disc extrusion, disc protrusion, endplate edema or Type 1 Modic change, lateral recess stenosis, Schmorl’s node, osteophyte, and any stenosis). In the seven potentially clinically important radiologic findings, the F1 score ranged from 0.9882 to 1.0. In this study, a rule-based NLP system identifying 23 findings related to LBP from X-ray, CT, and MRI reports was developed, and it presented good performance in regards to the four scoring parameters. Full article
(This article belongs to the Special Issue Intervertebral Disc Regeneration II)
Show Figures

Figure 1

Back to TopTop