Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ankyrin–spectrin interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1642 KB  
Review
Ankyrin-G and Its Binding Partners in Neurons: Orchestrating the Molecular Structure of the Axon Initial Segment
by Xiaowei Zhu, Yanyan Yu, Zhuqian Jiang, Yoshinori Otani and Masashi Fujitani
Biomolecules 2025, 15(6), 901; https://doi.org/10.3390/biom15060901 - 19 Jun 2025
Viewed by 2156
Abstract
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules [...] Read more.
The axon initial segment (AIS) is a specialized subcellular domain that plays an essential role in action potential initiation and the diffusion barrier. A key organizer of the AIS is Ankyrin-G, a scaffolding protein responsible for clustering voltage-gated ion channels, cell adhesion molecules (CAMs), and cytoskeletal components at this critical neuronal domain. Recent proteomic analyses have revealed a complex network of proteins in the AIS, emphasizing Ankyrin-G’s central role in its molecular architecture. This review discusses new findings in the study of AIS-associated proteins. It explains how Ankyrin-G and its binding partners (such as ion channels, CAMs, spectrins, actin, and microtubule-associated proteins including end-binding protein 3, tripartite motif-containing protein 46, and calmodulin-regulated spectrin-associated protein 2) organize their structure. Understanding the dynamic regulation and molecular interactions within the AIS offers insights into neuronal excitability and reveals potential therapeutic targets for axonal dysfunction–related diseases. Through these dynamic interactions, Ankyrin-G ensures the proper alignment and dense clustering of key channel complexes, thereby maintaining the AIS’s distinctive molecular and functional identity. By further unraveling the complexity of Ankyrin-G’s interactome, our understanding of AIS formation, maintenance, and plasticity will be considerably enhanced, contributing to the elucidation of the pathogenesis of neurological and neuropsychiatric disorders. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodevelopment)
Show Figures

Figure 1

11 pages, 1852 KB  
Article
Spherocytosis-Related L1340P Mutation in Ankyrin Affects Its Interactions with Spectrin
by Beata Machnicka, Aleksander Czogalla, Dżamila M. Bogusławska, Piotr Stasiak and Aleksander F. Sikorski
Life 2023, 13(1), 151; https://doi.org/10.3390/life13010151 - 4 Jan 2023
Cited by 3 | Viewed by 1777
Abstract
Previously, we reported a new missense mutation in the ANK1 gene that correlated with the hereditary spherocytosis phenotype. This mutation, resulting in L1340P substitution (HGMD CM149731), likely leads to the changes in the conformation of the ankyrin ZZUD domain important for ankyrin binding [...] Read more.
Previously, we reported a new missense mutation in the ANK1 gene that correlated with the hereditary spherocytosis phenotype. This mutation, resulting in L1340P substitution (HGMD CM149731), likely leads to the changes in the conformation of the ankyrin ZZUD domain important for ankyrin binding to spectrin. Here, we report the molecular and physiological effects of this mutation. First, we assessed the binding activity of human β-spectrin to the mutated ZZUDL1340P domain of ankyrin using two different experimental approaches—the study of association and dissociation responses of the spectrin–ankyrin binding domain and a sedimentation assay. In addition, we documented the changes in morphology caused by the overexpressed ankyrin ZZUD domain in human cell models. Our results prove the key role of the L1340 aa residue for the correct alignment of the ZZUD domain of ankyrin, which results in binding the latter with spectrin within the erythrocyte membrane. Replacing L1340 with a proline residue disrupts the spectrin-binding activity of ankyrin. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

22 pages, 6026 KB  
Article
Identification of Exported Plasmodium falciparum Proteins That Bind to the Erythrocyte Cytoskeleton
by Bikash Shakya, Geoffrey Kimiti Kilili, Ling Wang, Ernesto S. Nakayasu and Douglas J. LaCount
Microorganisms 2022, 10(7), 1438; https://doi.org/10.3390/microorganisms10071438 - 16 Jul 2022
Cited by 1 | Viewed by 3320
Abstract
Plasmodium proteins are exported to the erythrocyte cytoplasm to create an environment that supports parasite replication. Although hundreds of proteins are predicted to be exported through Plasmodium export element (PEXEL)-dependent and -independent mechanisms, the functions of exported proteins are largely uncharacterized. In this [...] Read more.
Plasmodium proteins are exported to the erythrocyte cytoplasm to create an environment that supports parasite replication. Although hundreds of proteins are predicted to be exported through Plasmodium export element (PEXEL)-dependent and -independent mechanisms, the functions of exported proteins are largely uncharacterized. In this study, we used a biochemical screening approach to identify putative exported P. falciparum proteins that bound to inside-out vesicles prepared from erythrocytes. Out of 69 P. falciparum PEXEL-motif proteins tested, 18 bound to inside-out vesicles (IOVs) in two or more independent assays. Using co-affinity purifications followed by mass spectrometry, pairwise co-purification experiments, and the split-luciferase assay, we identified 31 putative protein–protein interactions between erythrocyte cytoskeletal proteins and predicted exported P. falciparum proteins. We further showed that PF3D7_1401600 binds to the spectrin-binding domain of erythrocyte ankyrin via its MESA erythrocyte cytoskeleton binding (MEC) motif and to the N-terminal domains of ankyrin and 4.1R through a fragment that required an intact Plasmodium helical interspersed sub-telomeric (PHIST) domain. Introduction of PF3D7_1401600 into erythrocyte ghosts increased retention in the microsphiltration assay, consistent with previous data that reported a reduction of rigidity in red blood cells infected with PF3D7_1401600-deficient parasites. Full article
(This article belongs to the Special Issue Plasmodium falciparum: Host-Parasite Interaction)
Show Figures

Figure 1

Back to TopTop