Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = analog signal processing (ASP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2788 KB  
Review
A Review of Current Differencing Buffered Amplifiers: Performance Metrics and Technological Advances
by Shekhar Suman Borah and Prabha Sundaravadivel
Electronics 2024, 13(18), 3623; https://doi.org/10.3390/electronics13183623 - 12 Sep 2024
Cited by 4 | Viewed by 1618
Abstract
Current Differencing Buffered Amplifiers (CDBAs) are a critical class of analog circuit components capable of handling both current and voltage signals with minimal power consumption. Due to their low impedance voltage output, they play a significant role in modern electronics for developing high-performance, [...] Read more.
Current Differencing Buffered Amplifiers (CDBAs) are a critical class of analog circuit components capable of handling both current and voltage signals with minimal power consumption. Due to their low impedance voltage output, they play a significant role in modern electronics for developing high-performance, high-precision analog and mixed-signal circuits. But, designing and characterizing CDBAs pose several challenges, such as ensuring stability at high frequencies, minimizing noise impact for high-precision applications, and enhancing adaptability. Integrating CDBAs with other analog components to create multifunctional integrated circuits opens many opportunities in the analog signal-processing domain. This paper reviews the evolution and applications of CDBAs in analog signal processing. Various implementation schemes, including those using commercial Current Feedback Amplifiers (CFAs) and novel CMOS configurations, are analyzed for their performance metrics such as supply voltage, power dissipation, input/output impedances, and technology node. Future trends and challenges in advancing CDBA technology towards higher integration and lower-voltage operation are discussed, highlighting potential applications in next-generation electronics. Full article
(This article belongs to the Special Issue Feature Review Papers in Electronics)
Show Figures

Figure 1

11 pages, 6309 KB  
Communication
Dual-Mode Embedded Impulse-Radio Ultra-Wideband Radar System for Biomedical Applications
by Wei-Ping Hung and Chia-Hung Chang
Sensors 2024, 24(17), 5555; https://doi.org/10.3390/s24175555 - 28 Aug 2024
Cited by 3 | Viewed by 1702
Abstract
This paper presents a real-time and non-contact dual-mode embedded impulse-radio (IR) ultra-wideband (UWB) radar system designed for microwave imaging and vital sign applications. The system is fully customized and composed of three main components, an RF front-end transmission block, an analog signal processing [...] Read more.
This paper presents a real-time and non-contact dual-mode embedded impulse-radio (IR) ultra-wideband (UWB) radar system designed for microwave imaging and vital sign applications. The system is fully customized and composed of three main components, an RF front-end transmission block, an analog signal processing (ASP) block, and a digital processing block, which are integrated in an embedded system. The ASP block enables dual-path receiving for image construction and vital sign detection, while the digital part deals with the inverse scattering and direct current (DC) offset issues. The self-calibration technique is also incorporated into the algorithm to adjust the DC level of each antenna for DC offset compensation. The experimental results demonstrate that the IR-UWB radar, based on the proposed algorithm, successfully detected the 2D image profile of the object as confirmed by numerical derivation. In addition, the radar can wirelessly monitor vital sign behavior such as respiration and heartbeat information. Full article
(This article belongs to the Special Issue Radar Receiver Design and Application)
Show Figures

Figure 1

Back to TopTop