Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = amiodarone HCl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4016 KiB  
Article
Experimental Studies on the Effect of Expired Amiodarone Drug (EAD) as a Corrosion Inhibitor on Mild Steel in 1 M HCl
by H. Mohamed Kasim Sheit, S. Musthafa Kani, M. Anwar Sathiq, S. S. Syed Abuthahir, P. Subhapriya, K. S. Nivedhitha, M. A. Umarfarooq, Irfan Anjum Badruddin, Sarfaraz Kamangar and Abdul Saddique Shaik
Materials 2024, 17(3), 751; https://doi.org/10.3390/ma17030751 - 4 Feb 2024
Cited by 15 | Viewed by 1941
Abstract
In the present investigation, the corrosion tendency of mild steel under acidic pH was studied by employing unused expired amiodarone (EAD) drug as a potential corrosion inhibitor by adopting the weight loss measurement method. The corrosion inhibition efficiency (IE) of the formed protective [...] Read more.
In the present investigation, the corrosion tendency of mild steel under acidic pH was studied by employing unused expired amiodarone (EAD) drug as a potential corrosion inhibitor by adopting the weight loss measurement method. The corrosion inhibition efficiency (IE) of the formed protective film (EAD) on the steel surface was analyzed using potentiodynamic polarization and AC-impedance spectroscopy studies. The surface morphology of the mild steel before and after corrosion (in 1.0 M HCl) was analyzed via scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDAX), atomic force microscopy (AFM), and thermodynamic studies. The weight loss measurement under different concentrations of EAD indicated that an excellent inhibition was displayed at a concentration of 0.001 M, and the IE was found to depend on both the concentration and molecular structure of EAD. A potentiodynamic polarization study revealed that EAD predominantly acted as a cathode inhibitor, and electrochemical impedance spectroscopy (EIS) confirmed the adsorption of EAD on the surface of mild steel, which obeyed Temkin’s adsorption isotherm model. The calculated thermodynamic parameters revealed that adsorption was spontaneous and exothermic. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Inhibition of Materials)
Show Figures

Figure 1

13 pages, 3834 KiB  
Article
Nanocrytals-Mediated Oral Drug Delivery: Enhanced Bioavailability of Amiodarone
by Anum Munir Awan, Arshad Farid, Shefaat Ullah Shah, Dildar Khan, Fiza Ur Rehman, Muhammad Junaid Dar, Tayyaba Iftikhar, Shakira Ghazanfar, Charis M. Galanakis, Abdulhakeem S. Alamri, Syed Mohammed Basheeruddin Asdaq and Kifayat Ullah Shah
Pharmaceutics 2022, 14(6), 1300; https://doi.org/10.3390/pharmaceutics14061300 - 18 Jun 2022
Cited by 12 | Viewed by 3443
Abstract
The aim of this study was to improve the saturation solubility, dissolution profile and oral bioavailability of amiodarone hydrochloride (AMH), a highly lipophilic drug. Stabilizer (Pluronic F-127)-coated AMH nanocrystals (AMH-NCs) were developed by a combination of antisolvent precipitation and homogenization techniques. The optimized [...] Read more.
The aim of this study was to improve the saturation solubility, dissolution profile and oral bioavailability of amiodarone hydrochloride (AMH), a highly lipophilic drug. Stabilizer (Pluronic F-127)-coated AMH nanocrystals (AMH-NCs) were developed by a combination of antisolvent precipitation and homogenization techniques. The optimized formulation comprised pluronic F-127 and AMH at the concentration of 4% and 2% w/v, respectively. The particle size (PS), zeta potential (ZP) and polydispersity index (PDI) of the optimized formulation was found to be 221 ± 1.2 nm, 35.3 mV and 0.333, respectively. The optimized formulation exhibited a rough surface morphology with particles in colloidal dimensions and a significant reduction in crystallinity of the drug. AMH-NCs showed a marked increase in the saturation solubility as well as rapid dissolution rate when compared with the AMH and marketed product. The stability study displayed that the formulation was stable for 3 months, with no significant change in the PS, ZP and PDI. The in vivo pharmacokinetic study demonstrated the ability of AMH-NCs to significantly (p < 0.05) improve the oral bioavailability (2.1-fold) of AMH in comparison with AMH solution, indicating that the production of AMH-NCs using a combination of antisolvent precipitation and homogenization techniques could enhance the bioavailability of the drug. Full article
(This article belongs to the Special Issue Feature Papers in Physical Pharmacy and Formulation)
Show Figures

Figure 1

Back to TopTop