Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = amicarbazone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2496 KiB  
Article
Neurotoxicity Assessment of Amicarbazone Using Larval Zebrafish
by Seung-Hwa Baek, Yeonhwa Kim, Suhyun Kim and Hae-Chul Park
Toxics 2024, 12(11), 783; https://doi.org/10.3390/toxics12110783 - 28 Oct 2024
Viewed by 1314
Abstract
Amicarbazone (AMZ), a triazolinone herbicide widely applied in agriculture, is known to inhibit photosystem II in target plants, disrupting photosynthesis and causing oxidative stress that leads to weed mortality. Despite its widespread use, the developmental and neurotoxic effects of AMZ on aquatic organisms [...] Read more.
Amicarbazone (AMZ), a triazolinone herbicide widely applied in agriculture, is known to inhibit photosystem II in target plants, disrupting photosynthesis and causing oxidative stress that leads to weed mortality. Despite its widespread use, the developmental and neurotoxic effects of AMZ on aquatic organisms remain underexplored. This study assesses the impact of AMZ exposure on zebrafish (Danio rerio) embryos/larvae, focusing on developmental toxicity and neurotoxicity. Zebrafish were exposed to AMZ at various concentrations to evaluate survival, malformations, heart rate, and behavior. Significant developmental defects, including reduced survival rates, increased malformations, and decreased heart rates, were observed in zebrafish embryos exposed to AMZ, particularly at higher concentrations. Additionally, behavioral assays revealed decreased locomotor activity, particularly at concentrations of 100 and 200 mg/L. Moreover, AMZ exposure disrupted motor axon formation, oligodendrocyte development, and the expression of key genes involved in neurodevelopment. The downregulation of cholinergic, dopaminergic, and serotonergic signaling pathways was also identified, indicating neurotoxicity. These findings highlight AMZ’s potential to induce both developmental and neurotoxic effects in zebrafish and suggest the need for further research on its long-term ecological impacts. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

10 pages, 257 KiB  
Article
Alternative Herbicides for Controlling Herbicide-Resistant Annual Bluegrass (Poa annua L.) in Turf
by Rajesh Barua, Peter Boutsalis, Samuel Kleemann, Jenna Malone, Gurjeet Gill and Christopher Preston
Agronomy 2021, 11(11), 2148; https://doi.org/10.3390/agronomy11112148 - 26 Oct 2021
Cited by 5 | Viewed by 3347
Abstract
Poa annua is a cosmopolitan, cool-season grass species regarded as one of the most significant weeds of turfgrass. It is mainly controlled by herbicides; however, repeated use of herbicides in golf turf has resulted in the evolution of multiple-herbicide resistant P. annua. [...] Read more.
Poa annua is a cosmopolitan, cool-season grass species regarded as one of the most significant weeds of turfgrass. It is mainly controlled by herbicides; however, repeated use of herbicides in golf turf has resulted in the evolution of multiple-herbicide resistant P. annua. Four field experiments were performed in autumn and spring in golf turf to identify effective herbicide options to control multiple herbicide-resistant P. annua. In herbicide resistance screening, the trial site population (SA1) was found to be susceptible to amicarbazone and terbuthylazine, but resistant to simazine and metribuzin at the field rate of each herbicide. Consistent with the results of the pot study, the PSII-inhibiting herbicides amicarbazone and terbuthylazine provided the best control (80–100%) of P. annua in both autumn and spring trials with minimal damage to the turf. In contrast, the other two PSII-inhibiting herbicides, metribuzin and simazine, were relatively ineffective in controlling P. annua in the field. Indaziflam also performed well in both autumn trials and reduced P. annua occurrence by >75%. Pyroxasulfone and s-metolachlor only provided moderate weed control in both the autumn and spring trials, reducing P. annua occurrence by 50%. Among the nine different herbicides, amicarbazone and terbuthylazine were found to be most effective for spring and autumn application in turf. As resistance to some PSII-inhibiting herbicides has already evolved in this field population, the use of amicarbazone and terbuthylazine needs to be integrated with other herbicide modes of action and non-chemical tactics to delay the onset of resistance to them. Full article
(This article belongs to the Special Issue Mechanisms of Environmental Stress Tolerance in Forage and Turfgrass)
Back to TopTop