Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = aluminum hydroxide (Al(OH)3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3379 KiB  
Article
An Invitation on Characterization of H2-Reduced Bauxite Residue and Recovering Iron through Wet Magnetic Separation Processes
by Ahmad Hassanzadeh, Ganesh Pilla, Manish K. Kar and Przemyslaw B. Kowalczuk
Minerals 2023, 13(6), 728; https://doi.org/10.3390/min13060728 - 26 May 2023
Cited by 5 | Viewed by 2329
Abstract
Recovering iron from the bauxite residue (BR) is one of the long-standing challenges in the mining industry. However, there is a substantial lack of information in the literature regarding sample properties and iron extraction by reducing hydrogen. The present study aims at reducing [...] Read more.
Recovering iron from the bauxite residue (BR) is one of the long-standing challenges in the mining industry. However, there is a substantial lack of information in the literature regarding sample properties and iron extraction by reducing hydrogen. The present study aims at reducing a Greek BR using hydrogen, its characterization, and separating iron by magnetic separation processes. To this end, the reduced sample was characterized using X-ray diffractometry analysis (XRD), X-ray fluorescence spectrometer analysis (XRF), thermomagnetic analysis (TMA), automated mineralogy (AM), and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The effect of particle size (−200 + 100 µm, −100 + 75 µm, and <75 µm) was investigated through a medium-intensity magnetic separation (MIMS, Davis Tube) at 1000–2500 Gauss and a Slon® magnetic separator (1000 G). The effects of solid content (3% and 10% w/w) in a wet low-intensity magnetic separation (WLIMS, 350 G) and a two-stage MIMS followed by WLIMS were investigated. It was revealed that through reduction at 500 °C and 2 h with 20 wt% NaOH under 5 vol.% H2 + 95 vol.% N2, iron oxides and ferric oxyhydroxide (Fe2O3 and FeOOH) were converted into magnetite (Fe3O4), whereas aluminum (oxy)hydroxides (Al(OOH), Al(OH)3) were reacted with Na+ towards sodium aluminates (NaAlO2). The AM observations indicated that only 3% of iron was in the phase of liberated magnetite, and the remaining was associated with Na, Al, and Ti phases with different intensities. The dissemination of iron throughout the matrix of the sample was recognized as the principal challenge in the physical separation processes. It was found that increasing magnetic intensity from 1000 G to 2500 G resulted in improved recovery for all studied particle size fractions in Davis Tube tests. The particle range of −106 + 74 µm was chosen as the most appropriate size to achieve the maximum Fe content of 41%. The results of WLIMS (350 G) showed the maximum Fe grade but revealed less recovery of 52% and 27% at 10% and 3% solid contents, respectively, compared to the Davis Tube trials. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

10 pages, 1661 KiB  
Article
Alkali-Etched NiCoAl-LDH with Improved Electrochemical Performance for Asymmetric Supercapacitors
by Liyin Hou, Xufeng Zhou, Lina Kong, Zhipeng Ma, Li Su, Zhaoping Liu and Guangjie Shao
Nanomaterials 2023, 13(7), 1192; https://doi.org/10.3390/nano13071192 - 27 Mar 2023
Cited by 9 | Viewed by 2213
Abstract
Hydrotalcite, first found in natural ores, has important applications in supercapacitors. NiCoAl-LDH, as a hydrotalcite-like compound with good crystallinity, is commonly synthesized by a hydrothermal method. Al3+ plays an important role in the crystallization of hydrotalcite and can provide stable trivalent [...] Read more.
Hydrotalcite, first found in natural ores, has important applications in supercapacitors. NiCoAl-LDH, as a hydrotalcite-like compound with good crystallinity, is commonly synthesized by a hydrothermal method. Al3+ plays an important role in the crystallization of hydrotalcite and can provide stable trivalent cations, which is conducive to the formation of hydrotalcite. However, aluminum and its hydroxides are unstable in a strong alkaline electrolyte; therefore, a secondary alkali treatment is proposed in this work to produce cation vacancies. The hydrophilicity of the NiCoAl-OH surface with cation vacancy has been greatly improved, which is conducive to the wetting and infiltration of electrolyte in water-based supercapacitors. At the same time, cation vacancies generate a large number of defects as active sites for energy storage. As a result, the specific capacity of the NiCoAl-OH electrode after 10,000 cycles can be maintained at 94.1%, which is much better than the NiCoAl-LDH material of 74%. Full article
Show Figures

Figure 1

13 pages, 3642 KiB  
Article
AM60-AlN Nanocomposite and AM60 Alloy Corrosion Activity in Simulated Marine-Coastal Ambience
by Luis Chávez, Lucien Veleva, Gerardo Sánchez and Hajo Dieringa
Metals 2022, 12(12), 1997; https://doi.org/10.3390/met12121997 - 22 Nov 2022
Cited by 5 | Viewed by 1831
Abstract
The initial stages of AM60-AlN nanocomposite and AM60 corrosion behaviors were compared over 30 days of exposure to solution (NaCl, Na2SO4 and NaHCO3), simulating the marine-coastal environment (SME). The incorporation of AlN nanoparticles (1.0 wt.%) in [...] Read more.
The initial stages of AM60-AlN nanocomposite and AM60 corrosion behaviors were compared over 30 days of exposure to solution (NaCl, Na2SO4 and NaHCO3), simulating the marine-coastal environment (SME). The incorporation of AlN nanoparticles (1.0 wt.%) in the AM60 alloy matrix favored the lower roughness of the AM60-AlN, associated with the grain refinement in the matrix. During the immersion of the alloys, pH of the SME solution shifted to alkaline values >9, and therefore, the solubility of AlN aluminum hydroxide phases were raised, followed by a slightly higher release of Mg-ions and corrosion rate increase. The chloride ions attributed to the unstability of the Al-Mn phase and Al(OH)3 corrosion product was formed in a low content. The composite AM60-AlN presented lower value of the electrochemical noise resistance (Rn), suggesting that the corrosion process occurs with less difficulty. The localized corrosion near the Al-Mn cathodes seems to be stronger on the composite surface, in area and depth of penetration. The corrosion current fluctuations suggested that the corrosion is a weakly persistent process, dominated by the fractional Gaussian noise (fGn). Full article
Show Figures

Figure 1

24 pages, 5810 KiB  
Article
Electrodeposition of a Li-Al Layered Double Hydroxide (LDH) on a Ball-like Aluminum Lathe Waste Strips in Structured Catalytic Applications: Preparation and Characterization of Ni-Based LDH Catalysts for Hydrogen Evolution
by Song-Hui Huang, Yu-Jia Chen, Wen-Fu Huang and Jun-Yen Uan
Catalysts 2022, 12(5), 520; https://doi.org/10.3390/catal12050520 - 5 May 2022
Cited by 9 | Viewed by 3687
Abstract
A functionally structured catalyst was explored for ethanol steam reforming (ESR) to generate H2. Aluminum lathe waste strips were employed as the structured catalytic framework. The mixed metal oxide (Li-Al-O) was formed on the surface of Al lathe waste strips through [...] Read more.
A functionally structured catalyst was explored for ethanol steam reforming (ESR) to generate H2. Aluminum lathe waste strips were employed as the structured catalytic framework. The mixed metal oxide (Li-Al-O) was formed on the surface of Al lathe waste strips through calcination of the Li-Al-CO3 layered double hydroxide (LDH), working as the support for the formation of Ni catalyst nanoparticles. NaOH and NaHCO3 titration solutions were, respectively, used for adjusting the pH of the NiCl2 aqueous solutions at 50 °C when developing the precursors of the Ni-based catalysts forming in-situ on the Li-Al-O oxide support. The Ni precursor on the Al structured framework was reduced in a H2 atmosphere at 500 °C for 3 h, changing the hydroxide precursor into Ni nanoparticles. The titration agent (NaOH or NaHCO3) effectively affected the physical and chemical characterizations of the catalyst obtained by the different titrations. The ESR reaction catalyzed by the structured catalysts at a relatively low temperature of 500 °C was studied. The catalyst using NaHCO3 titration presented good stability for generating H2 during ESR, achieving a high rate of H2 volume of about 122.9 L/(gcat·h). It also had a relatively low acidity on the surface of the Li-Al-O oxide support, leading to low activity for the dehydration of ethanol and high activity to H2 yield. The interactions of catalysts between the Ni precursors and the Li-Al-O oxide supports were discussed in the processes of the H2 reduction and the ESR reaction. Mechanisms of carbon formation during the ESR were proposed by the catalysts using NaOH and NaHCO3 titration agents. Full article
Show Figures

Graphical abstract

16 pages, 4737 KiB  
Article
Corrosion Behavior and Mechanism of Basalt Fibers in Sodium Hydroxide Solution
by Chunhong Tang, Hao Jiang, Xu Zhang, Guangyao Li and Junjia Cui
Materials 2018, 11(8), 1381; https://doi.org/10.3390/ma11081381 - 8 Aug 2018
Cited by 48 | Viewed by 4438
Abstract
In this paper, the corrosion mechanism and tensile properties of basalt fibers in sodium hydroxide (NaOH) solution with various concentrations and temperatures were studied. The hydroxyl ions disrupt the –Si–O–Si– and –Si–O–Al– bonds leading to the formation of insoluble hydroxides. With the continuation [...] Read more.
In this paper, the corrosion mechanism and tensile properties of basalt fibers in sodium hydroxide (NaOH) solution with various concentrations and temperatures were studied. The hydroxyl ions disrupt the –Si–O–Si– and –Si–O–Al– bonds leading to the formation of insoluble hydroxides. With the continuation of the hydration reaction, a hydration layer (corrosion shell) with high content of calcium, iron, manganese and titanium ions was formed on the fiber surface. The corrosion shell enabled an increase in the strength and elongation at break of basalt fibers, significantly. Results showed that the tensile strength of fibers was strongly dependent on temperature and concentration. After the basalt fibers were immersed in 1 mol/L NaOH solution at 50 °C for 1 h, 3 h, 6 h, 1 day and 3 days, their retention ratios of strength were 67.6%, 57.8%, 52.5%, 49.0%, 58.2%, respectively. Higher temperature accelerated the corrosion rate of basalt fibers, shortened the formation time of the corrosion shell and increased mass loss. From 25 to 70 °C, the mass loss of fibers increased from 2.4% to 33.8% for fibers immersed in 1 mol/L NaOH for 3 days. The experimental results from quantitative x-ray fluorescence (XRF) showed that the mass loss of basalt fibers was mainly due to the leaching of silicon, aluminum and potassium ions. Full article
Show Figures

Graphical abstract

12 pages, 1801 KiB  
Article
Theoretical Study of Aluminum Hydroxide as a Hydrogen-Bonded Layered Material
by Dongwook Kim, Jong Hyun Jung and Jisoon Ihm
Nanomaterials 2018, 8(6), 375; https://doi.org/10.3390/nano8060375 - 28 May 2018
Cited by 32 | Viewed by 6250
Abstract
In many layer-structured materials, constituent layers are bound through van der Waals (vdW) interactions. However, hydrogen bonding is another type of weak interaction which can contribute to the formation of multi-layered materials. In this work, we investigate aluminum hydroxide [Al(OH) 3 ] having [...] Read more.
In many layer-structured materials, constituent layers are bound through van der Waals (vdW) interactions. However, hydrogen bonding is another type of weak interaction which can contribute to the formation of multi-layered materials. In this work, we investigate aluminum hydroxide [Al(OH) 3 ] having hydrogen bonding as an interlayer binding mechanism. We study the crystal structures and electronic band structures of bulk, single-layer, and multi-layer Al(OH) 3 using density functional theory calculations. We find that hydrogen bonds across the constituent layers indeed give rise to interlayer binding stronger than vdW interactions, and a reduction of the band gap occurs for an isolated layer as compared to bulk Al(OH) 3 which is attributed to the emergence of surface states. We also consider the alkali-halide intercalation between layers and examine how the intercalated atoms affect the atomic and electronic structures of Al(OH) 3 . Full article
(This article belongs to the Special Issue Hybrid Nanomaterials for Future Technologies)
Show Figures

Figure 1

Back to TopTop