Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = alumina slag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4508 KiB  
Article
One-Week Hydration Characteristics of Silica-Alumina Based Cementitious Materials Composed of Phosphorous Slag: Phosphorus Involved in Calcium Alumino-Silicate Hydrate Gel
by Zipei Li, Yu Wang, Jiale Zhang, Yipu Wang, Na Zhang, Xiaoming Liu and Yinming Sun
Materials 2025, 18(14), 3360; https://doi.org/10.3390/ma18143360 - 17 Jul 2025
Viewed by 294
Abstract
Phosphorous slag is an industrial by-product generated in the process of producing yellow phosphorus by electric furnace, which occupies a substantial number of land resources and causes serious environmental pollution. The comprehensive utilization of phosphorous slag is a major topic relevant to the [...] Read more.
Phosphorous slag is an industrial by-product generated in the process of producing yellow phosphorus by electric furnace, which occupies a substantial number of land resources and causes serious environmental pollution. The comprehensive utilization of phosphorous slag is a major topic relevant to the sustainability of the yellow phosphorus industry. In this paper, we attempted to utilize phosphorous slag as a supplementary cementing material to prepare silica-aluminum based cementitious material (SAC-PHS). To determine how phosphorus influences the early-age hydration reaction process of silica-aluminum based cementitious material, three groups of samples, PHS20, PHS25, and PHS30, with better mechanical properties were selected to deeply investigate their one-week hydration characteristics. Characterization results showed that the main hydration products of SAC-PHS were C-A-S-H gels and ettringite. PHS25 specimen produced more C-A-S-H gels and ettringite than the other two samples after one-week hydration. Interestingly, the P/Si atomic ratio indicated that chemical bonds were formed between Si and P during the formation of C-A-S-H gels, which improved the strength of SAC-PHS. Our findings offer valuable insights for the application of phosphorous slag in construction and building materials and promote the efficient resource utilization of phosphorous residue. Full article
Show Figures

Figure 1

23 pages, 6254 KiB  
Article
Cleaner Production of Metallurgical-Grade Iron from High-Iron Bauxite Residue via Smelting Reduction: Thermodynamic Control, Industrial Application Potential, and Slag Utilization Strategy
by Kun Wang, Ting-An Zhang, Zhi-He Dou, Yan Liu and Guo-Zhi Lv
Materials 2025, 18(14), 3288; https://doi.org/10.3390/ma18143288 - 11 Jul 2025
Viewed by 276
Abstract
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red [...] Read more.
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red mud using the smelting reduction process. Thermodynamic analysis results show that an increase in temperature and sodium oxide content, along with an appropriate mass ratio of Al2O3 to SiO2 (A/S) and mass ratio of CaO to SiO2 (C/S), contribute to the enhancement of the liquid phase mass fraction of the slag. During the smelting reduction process of high-iron red mud, iron recoveries for low-alkali high-iron red mud and high-alkali high-iron red mud under optimal conditions were 98.14% and 98.36%, respectively. The metal obtained through reduction meets the industrial standard for steel-making pig iron, which is also confirmed in the pilot-scale experiment. The smelting reduction process of high-iron red mud can be divided into two stages, where the reaction is predominantly governed by interfacial chemical reaction and diffusion control, respectively. The apparent activation energy of high-alkali high-iron red mud is lower than that observed for low-alkali high-iron red mud. The reduced slag can be used as a roadside stone material or cement clinker. This proposed method represents a sustainable process for the comprehensive utilization of high-iron red mud, which also promotes the minimization of red mud. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

18 pages, 12112 KiB  
Article
MgO–C Refractories with Al2O3 and TiO2 Nano-Additives: Insights from X-Ray Micro-Computed Tomography and Conventional Techniques for Assessing Corrosion and Oxidation
by Sevastia Gkiouzel, Vasileios Ioannou, Christina Gioti, Konstantinos C. Vasilopoulos, Angelos Ntaflos, Alkiviadis S. Paipetis, Constantinos E. Salmas and Michael A. Karakassides
Nanomanufacturing 2025, 5(3), 10; https://doi.org/10.3390/nanomanufacturing5030010 - 9 Jul 2025
Viewed by 251
Abstract
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using [...] Read more.
MgO–C refractory materials were developed by incorporating different ratios of alumina/titania nano-additives which were synthesized chemically. Their physical and mechanical properties, oxidation resistance, slag wettability, bulk density, apparent porosity, cold crushing strength, oxidation index, and closed porosity were tested, evaluated, and compared using conventional techniques as well as X-ray micro-computed tomography (µCT). This investigation indicated a slight degradation of physical properties and mechanical strengthening which was stronger for samples with increased alumina content. Oxidation and corrosion extent were tested both with X-ray tomography and conventional methods. The first method allowed for the calculation of the oxidation index, the detection of closed porosity, and an improved analysis of the internal corrosion, avoiding the sectioning of the materials. This result confirms the supremacy of the first technique. On the contrary, although conventional methods such as the Archimedes procedure cannot detect close porosity, they provide more accurate measurements of the physical properties of refractories. This study shows that conventional methods exhibit superiority in investigations of the pore structures of refractories for pore sizes in the range 1–2 μm, while the use of the μCT system is limited for pore sizes equal to or larger than 20 μm. Full article
Show Figures

Figure 1

12 pages, 5865 KiB  
Article
Recovery of Titanium and Aluminum from Secondary Waste Solutions via Ultrasonic Spray Pyrolysis
by Srećko Stopić, Duško Kostić, Vladimir Damjanović, Mitar Perušić, Radislav Filipović, Nenad Nikolić and Bernd Friedrich
Metals 2025, 15(7), 701; https://doi.org/10.3390/met15070701 - 24 Jun 2025
Viewed by 329
Abstract
The synthesis of oxide nanopowders through ultrasonic spray pyrolysis (USP) represents a sustainable method for producing high-purity, spherical particles tailored for advanced material applications. Recent developments in USP synthesis leverage the continuous transport of aerosols from an ultrasonic generator to a high-temperature furnace, [...] Read more.
The synthesis of oxide nanopowders through ultrasonic spray pyrolysis (USP) represents a sustainable method for producing high-purity, spherical particles tailored for advanced material applications. Recent developments in USP synthesis leverage the continuous transport of aerosols from an ultrasonic generator to a high-temperature furnace, with nanopowders collected efficiently using an electrostatic precipitator. This study explored the use of USP for titanium oxysulfate and aluminum nitrate solutions derived from the aluminum industry, focusing on resource recovery and waste reduction. Titanium oxysulfate was synthesized by leaching slag, generated during the reduction of red mud, with sulfuric acid under oxidizing, high-pressure conditions. After purification, the titanium oxysulfate solution was processed using USP in a hydrogen reduction atmosphere to yield spherical titanium dioxide (TiO2) nanopowders. The hydrogen atmosphere enabled precise control over the nanoparticles’ morphology and crystallinity, enhancing their suitability for use in applications such as photocatalysis, pigments, and advanced coatings. In parallel, both synthetic and laboratory solutions of aluminum nitrate [Al(NO3)3] were prepared. The laboratory solution was prepared by leaching aluminum hydroxide oxide (AlOOH) with hydrochloric acid to form aluminum chloride (AlCl3), followed by a conversion to aluminum nitrate through the addition of nitric acid. The resulting aluminum nitrate solution was subjected to USP, producing highly uniform, spherical alumina (Al2O3) nanopowders with a narrow size distribution. The resulting nanopowders, characterized by their controlled properties and potential applicability, represent an advancement in oxide powder synthesis and resource-efficient manufacturing techniques. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

16 pages, 2956 KiB  
Article
Utilization of Red Mud from Processing of Low-Quality Bauxites
by Sergey Gladyshev, Nazym Akhmadiyeva, Rinat Abdulvaliyev, Leila Imangaliyeva, Kenzhegali Smailov, Yerkezhan Abikak, Asya Kasymzhanova and Leila Amanzholova
Processes 2025, 13(7), 1958; https://doi.org/10.3390/pr13071958 - 20 Jun 2025
Viewed by 323
Abstract
Red mud from bauxite processing is among the large-tonnage technogenic waste that poses a significant ecological threat. At the same time, red mud serves as a raw material source for expanding the resource base for obtaining iron, rare metals, and rare earth elements. [...] Read more.
Red mud from bauxite processing is among the large-tonnage technogenic waste that poses a significant ecological threat. At the same time, red mud serves as a raw material source for expanding the resource base for obtaining iron, rare metals, and rare earth elements. Numerous studies on their utilization have shown that only through comprehensive processing, combining pyrometallurgical and hydrometallurgical methods, is it possible to maximize the extraction of all the useful components. This work addresses the first stage of a comprehensive technology for processing red mud through reduction smelting, separating iron in the form of pig iron, and producing slag. Studies were conducted on the reductive smelting of red mud using waste slurry from alumina production as the calcium-containing material, taken in proportions calculated to obtain a fluid slag with a hydraulic modulus of 0.55–0.8. The permissible mixing range of red mud with waste slurry was determined to be in the ratio of 0.56–1.2. In cases where the charge was prepared in violation of the required hydraulic modulus value, pig iron was not obtained during smelting. When the hydraulic modulus requirement was met, the temperature of the reductive smelting process was 1350–1400 °C. The total amount of recovered iron obtained as pig iron and fine fractions amounted to 99.5% of the original content. The low iron content (0.23–0.31%) in the non-magnetic slag fraction allows for the production of high-quality titanium oxide and rare earth element concentrates in the subsequent stages of the comprehensive hydrometallurgical processing of red mud, involving acid leaching. Based on the results of a phase analysis of the slag, pig iron, and melt, the reactions of the reductive smelting process were established, and their thermodynamic likelihood was determined. In fluid slags, the content of the sodium aluminosilicate phase is twice as high as that in slag with a higher hydraulic modulus. The reductive smelting of 100% red mud with the addition of calcium oxide, calculated to achieve a hydraulic module of 0.55 at a temperature of 1350–1400 °C, produced pig iron and slag with high alkali and iron contents. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

16 pages, 3203 KiB  
Article
Cement–Industrial Waste Slag-Based Synergistic Preparation of Flowable Solidified Soil: Mechanisms and Process Optimization
by Hang Yu, Dongxing Wang and Yuhao Shi
Appl. Sci. 2025, 15(11), 5964; https://doi.org/10.3390/app15115964 - 26 May 2025
Viewed by 359
Abstract
In order to study the cement–industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement–industrial waste-cured soils, [...] Read more.
In order to study the cement–industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement–industrial waste-cured soils, unconfined compressive strength tests, fluidity tests, wet and dry cycle tests, and electron microscope scanning tests were carried out. The mechanical properties and microstructure of the cement–industrial slag were revealed and used to analyze the curing mechanism. The results showed that, among the cement–industrial wastes, cement and blast furnace slag had a significant effect on the unconfined compressive strength of the specimens, and the optimal ratio for early strength was cement–fly ash–slag–phosphogypsum = 1:0.11:0.44:0.06; the optimal ratio for late strength was cement–fly ash–slag–phosphogypsum = 1:0.44:0.44:0.06. In the case of a 140% water content, the 28d compressive strengths of curing agent Ratios I and II were 550.3 kPa and 586.5 kPa, respectively. When a polycarboxylic acid water-reducing agent was mixed at 6.4%, the mobilities of curing agent Ratios I and II increased by 32.1% and 35.8%, and the 28d compressive strengths were 504.1 kPa and 548.8 kPa, respectively. When calcium chloride was incorporated at 1.5%, the early strength of the cured soil increased by 33% and 29.1% compared to that of the unadulterated case year on year, and the mobility was almost unchanged. From microanalysis, it was found that the cement–industrial waste produced the expansion hydration products calcium alumina (AFt) and calcium silicate (C-S-H) during the hydration process. The results of this study provide a certain basis and reference value for the use of marine soft soil as a fluid filling material. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 1789 KiB  
Article
Studying the Sintering Behavior of H2-Reduced Bauxite Residue Pellets Using High-Temperature Thermal Analysis
by Dali Hariswijaya and Jafar Safarian
Materials 2025, 18(10), 2378; https://doi.org/10.3390/ma18102378 - 20 May 2025
Viewed by 442
Abstract
Treating bauxite residue as an alternative source of metals for iron and aluminum industry is an approach to promote circular economy in metal industries. Reduction of metal oxides with a H2-based process is an important step for the decarbonization of metal [...] Read more.
Treating bauxite residue as an alternative source of metals for iron and aluminum industry is an approach to promote circular economy in metal industries. Reduction of metal oxides with a H2-based process is an important step for the decarbonization of metal industry. In this study, bauxite residue (BR) pellets were prepared and were reduced with different H2-H2O gas compositions at different temperatures, which yielded with various degrees of reduction. The bauxite residue pellets were made from a mixture of bauxite residue and Ca(OH)2 powders and sintered at 1150 °C. Hydrogen reduction was carried out on the oxide pellets using a resistance furnace at elevated temperatures in controlled reduction atmosphere of H2-H2O gas mixtures, which resulted in the reduction of iron oxides in the pellets. Unreduced and reduced pellets were subsequently heated to 1400 °C to study their sintering behavior during H2 reduction using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) techniques to investigate the evolution of phases related to slag formation. Equilibrium module of Factsage™ was utilized to analyze results of thermal analysis. Both chemical and physical changes that occurred during the sintering process of the H2-reduced BR pellets were successfully detected by TG–DTA analysis, and the initial slag- and gas-phase formation were detected to occur from 900 °C and 1180 °C, respectively. One of the most notable chemical reactions to occur during the analysis was formation of mayenite at 810 °C, which is easily leachable, providing potential for recovery of alumina. Full article
Show Figures

Graphical abstract

18 pages, 14183 KiB  
Article
Integrated Utilization Strategies for Red Mud: Iron Extraction, Sintered Brick Production, and Non-Calcined Cementitious Binder Development for Environmental Sustainability
by Bin Li, Fang Xu, Yan Ding, Fei Zheng and Junpeng Zou
Coatings 2025, 15(5), 522; https://doi.org/10.3390/coatings15050522 - 27 Apr 2025
Viewed by 494
Abstract
Red mud (RM), a highly alkaline waste from alumina production, poses severe environmental threats due to massive stockpiling (>350 million tons in China) and groundwater contamination. This study evaluates three scalable strategies to repurpose RM: iron recovery via magnetic separation, sintered brick production [...] Read more.
Red mud (RM), a highly alkaline waste from alumina production, poses severe environmental threats due to massive stockpiling (>350 million tons in China) and groundwater contamination. This study evaluates three scalable strategies to repurpose RM: iron recovery via magnetic separation, sintered brick production using RM–fly ash–granulated blast furnace slag (6:1:3 ratio), and non-calcined cementitious binders combining RM and phosphogypsum (PG). Industrial-scale iron extraction achieved 23.85% recovery of iron concentrate (58% Fe2O3 grade) and consumed 3.6 million tons/year of RM, generating CNY 31 million annual profit. Sintered bricks exhibited 10–15 MPa compressive strength, meeting ASTM C62-23 standard while reducing material costs by 30%. The RM–PG binder achieved 40 MPa compressive strength at 28 days without cement or calcination, leveraging RM’s alkalinity (21.95% Na2O) and PG’s sulfate activation. Collectively, these approaches reduced landfill reliance by 50% and CO2 emissions by 35%–40% compared to conventional practices. The results demonstrate RM’s potential as a secondary resource, offering economically viable and environmentally sustainable pathways for the alumina industry. Full article
Show Figures

Figure 1

13 pages, 5748 KiB  
Article
Recovery of Palladium and Silver from Copper Sludge and Spent Petrochemical Catalysts via Effective Pyrometallurgical Processing
by Hyunju Kim, Hyunsik Park and Joohyun Park
Metals 2025, 15(4), 466; https://doi.org/10.3390/met15040466 - 21 Apr 2025
Viewed by 505
Abstract
Copper-containing sludge and spent petrochemical catalyst (SPC) were investigated for recovering palladium (Pd) and silver (Ag). Increasing the mixing ratio of alumina-based SPC leads to reduced recovery rates at 1500 °C. Specifically, as the SPC mixing ratio increases from 10% to 30%, the [...] Read more.
Copper-containing sludge and spent petrochemical catalyst (SPC) were investigated for recovering palladium (Pd) and silver (Ag). Increasing the mixing ratio of alumina-based SPC leads to reduced recovery rates at 1500 °C. Specifically, as the SPC mixing ratio increases from 10% to 30%, the recovery rate of Pd and Ag sharply decreases to 62.1% and 91.0%, respectively. This is attributed to an increase in the slag viscosity as well as to the higher sulfur content in the metal phase by decreasing the CaO/Al2O3 ratio of the slag. An increase in the slag viscosity causes a decrease in the metal recovery, as it lowers the settling velocity of metal droplets, resulting in imperfect metal separation, i.e., an increase in physical loss. Additionally, the presence of sulfur at the slag–metal interface was found to reduce interfacial tension, facilitating the entrapment of copper droplets within the slag. This further hindered phase separation and contributed to an increase in physical loss. This study highlights that physical loss is more serious in metal recovery rather than chemical loss, which is dependent on the thermochemical solubility of the target metals in the slag. The results emphasize the need for the precise control of slag properties to maximize the metal recovery processes in conjunction with a mitigation of CO2 emissions. Full article
Show Figures

Graphical abstract

29 pages, 2823 KiB  
Article
Characterization of Al-Containing Industrial Residues in the ESEE Region Supporting Circular Economy and the EU Green Deal
by Emilija Fidanchevski, Katarina Šter, Maruša Mrak, Milica Rajacic, Bence David Koszo, Andrej Ipavec, Klemen Teran, Gorazd Žibret, Vojo Jovanov, Nikolina Stamatovska Aluloska, Mojca Loncnar, Lea Žibret and Sabina Dolenec
Materials 2024, 17(24), 6245; https://doi.org/10.3390/ma17246245 - 20 Dec 2024
Viewed by 987
Abstract
The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues [...] Read more.
The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues as secondary raw materials offers a pathway to economic, environmental, energetic, and social sustainability. In this respect, Al-containing industrial residues from alumina processing (red mud), thermal power plants (fly ash and bottom ash), and metallurgy (slag), as well as other industries, present a valuable mineral resource which can be considered as secondary raw materials (SRMs) with the potential to be used in construction, supporting the concept of circular economy. This paper focuses on the characterization of 19 secondary raw materials from the East South-East Europe (ESEE) region regarding their physical, chemical, mineralogical, and radiological characteristics. The goal is to provide a foundation for future innovations based on secondary raw materials, in alignment with the EU Green Deal and the principles of circular economy. The results showed that fly ash has the potential to be the best material among those analyzed to be used in the cement industry, mainly due to its favorable radiological and mineralogical properties. However, it is important to control the amount of free lime in the mixture, ensuring it remains below 10%. After evaluating secondary mineral raw materials for metal recovery, the results indicate that these materials are not viable sources for base metals or other technology-critical metals, such as REEs. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

17 pages, 45748 KiB  
Article
Utilization of Magnetic Fraction Isolated from Steel Furnace Slag as a Mild Abrasive in Formulation of Cu-Free Friction Composites
by Vlastimil Matějka, Priyadarshini Jayashree, Kryštof Foniok, Jozef Vlček, Petra Matějková and Giovanni Straffelini
Lubricants 2024, 12(12), 440; https://doi.org/10.3390/lubricants12120440 - 10 Dec 2024
Viewed by 982
Abstract
Magnetic fraction isolated from steel furnace slag was tested as a component of Cu-free friction composites. The friction–wear performance and production of wear particles during their testing using a pin-on-disc tester against a cast iron disc were evaluated. To compare the effect of [...] Read more.
Magnetic fraction isolated from steel furnace slag was tested as a component of Cu-free friction composites. The friction–wear performance and production of wear particles during their testing using a pin-on-disc tester against a cast iron disc were evaluated. To compare the effect of the magnetic fraction on the parameters studied, the composite with alumina and the composite with original steel furnace slag were also prepared and tested. All composites showed a comparable friction coefficient. The composite with original steel furnace slag, and the composite with a magnetic fraction showed higher wear resistance compared to the composite containing alumina. The positive effect of the magnetic fraction on the extent of the emission of wear particles was observed and explained by the decreased aggressiveness of this composite to the cast iron disc. The influence of the phase composition of the steel furnace slag and the magnetic fraction on the friction film formation was also indicated, and its effect on the production of wear particles was proposed. Full article
Show Figures

Graphical abstract

20 pages, 4389 KiB  
Article
Preparation of Low Carbon Silicomanganese Slag-Based Alkali-Activated Materials Using Alkali-Activated Silica Waste
by Yang Zheng, Zhi-Yuan Zhang, Yisong Liu, Xiaozhu Zhang, Shaoguo Kang, Leyang Lv and Junbo Zhou
Buildings 2024, 14(12), 3835; https://doi.org/10.3390/buildings14123835 - 29 Nov 2024
Cited by 2 | Viewed by 964
Abstract
The utilization of silicomanganese slag (SiMnS) as a precursor for alkali-activated materials (AAMs) is considered as an efficient approach for sustainable and eco-friendly large-scale resource utilization. However, sodium silicate solutions account for more than 50% of the production costs and carbon emissions of [...] Read more.
The utilization of silicomanganese slag (SiMnS) as a precursor for alkali-activated materials (AAMs) is considered as an efficient approach for sustainable and eco-friendly large-scale resource utilization. However, sodium silicate solutions account for more than 50% of the production costs and carbon emissions of AAMs. In this study, AAM activators were prepared by silica-containing waste (acid leaching residue of boron mud, BM-AR) and NaOH as raw materials, and were successfully substituted for commercial sodium silicate-NaOH activators. Results indicated that the NaOH dosage had a great effect on the concentration and modulus of the activator. With the appropriate dosage of NaOH (NaOH: BM-AR = 0.4–0.7), suitable moduli of AAM activators can be produced at a wide range of solid/liquid ratios (L/S = 3–4.5) under mild conditions (80–100 °C). The compressive strength of the SiMnS AAM specimens prepared by this activator can reach 68.58 MPa, and its hydration products were mainly hydrated calcium silicate and amorphous silica–alumina gel, indicating the successful preparation of AAM. Calculation showed that the carbon emission of the AAMs prepared in this study was 12.4% and 37.6% of that of OPC and commercial water glass/NaOH-activated AAMs, and the cost was only 67.14% and 60.78% of them. The process achieves the use of waste materials to replace commercial activators, and is expected to be extended to a variety of AAMs raw materials and silica-containing waste. This makes it a highly promising alternative method for the production of AAMs, particularly the ‘just add water’ AAMs. Full article
Show Figures

Figure 1

14 pages, 3032 KiB  
Article
Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave
by Srecko Stopic, Duško Kostić, Richard Schneider, Magnus Sievers, Florian Wegmann, Elif Emil Kaya, Mitar Perušić and Bernd Friedrich
Minerals 2024, 14(11), 1151; https://doi.org/10.3390/min14111151 - 13 Nov 2024
Cited by 4 | Viewed by 1716
Abstract
Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a [...] Read more.
Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure. Full article
Show Figures

Figure 1

20 pages, 2728 KiB  
Review
Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review
by Susana I. Leiva-Guajardo, Norman Toro, Edward Fuentealba, Mauricio J. Morel, Álvaro Soliz, Carlos Portillo and Felipe M. Galleguillos Madrid
Materials 2024, 17(22), 5434; https://doi.org/10.3390/ma17225434 - 7 Nov 2024
Cited by 3 | Viewed by 1875
Abstract
Hydrogen has emerged as a promising energy carrier, offering a viable solution to meet our current global energy demands. Solar energy is recognised as a primary source of renewable power, capable of producing hydrogen using solar cells. The pursuit of efficient, durable, and [...] Read more.
Hydrogen has emerged as a promising energy carrier, offering a viable solution to meet our current global energy demands. Solar energy is recognised as a primary source of renewable power, capable of producing hydrogen using solar cells. The pursuit of efficient, durable, and cost-effective photocatalysts is essential for the advancement of solar-driven hydrogen generation. Copper slag, a by-product of copper smelting and refining processes, primarily consists of metal oxides such as hematite, silica, and alumina. This composition makes it an attractive secondary resource for use as a photocatalyst, thereby diverting copper slag from landfills and generating 0.113 μmol/g h of hydrogen, as noted by Montoya. This review aims to thoroughly examine copper slag as a photocatalytic material, exploring its chemical, physical, photocatalytic, and electrochemical properties. Additionally, it evaluates its suitability for water treatment and its potential as an emerging material for large-scale solar hydrogen production. Full article
Show Figures

Graphical abstract

18 pages, 7107 KiB  
Article
Value Extraction from Ferrochrome Slag: A Thermochemical Equilibrium Calculation and Experimental Approach
by Nilamadhaba Sahu, Gajanan U. Kapure, Pankaj Kumar, Sunil Kumar Tripathy, Arijit Biswas, Navneet Singh Randhawa and Manas Paliwal
Minerals 2024, 14(11), 1097; https://doi.org/10.3390/min14111097 - 29 Oct 2024
Cited by 2 | Viewed by 1675
Abstract
The valorization of slag from the production of high-carbon ferrochrome is a challenge for ferrochrome producers. The recycling of high-carbon ferrochrome slag was explored through the smelting route to recover Fe–Si–Al–Cr alloys and reengineer the residual slag for alumina-enriched refractory material. In this [...] Read more.
The valorization of slag from the production of high-carbon ferrochrome is a challenge for ferrochrome producers. The recycling of high-carbon ferrochrome slag was explored through the smelting route to recover Fe–Si–Al–Cr alloys and reengineer the residual slag for alumina-enriched refractory material. In this research, the focus was to reduce the SiO2% and enrichment of Al2O3% in the final slag and recover the metallic value in the form of a complex alloy containing Fe, Si, Cr and Al. The manuscript consists of a thermochemical simulation of the smelting of FeCr slag followed by smelting experiments to optimize the process parameters such as temperature and the addition of coke, cast iron and alumina. An experimental investigation revealed that the maximum recovery of Si (57.4% recovery), Al in the alloy (20.56% recovery) and Al2O3 (85.78% recovery) in the slag was achieved at a charge mix consisting of 1000 g of FeCr slag, 300 g of alumina, 200 g of cast iron and 300 g of coke. The present study also demonstrated the usefulness of prior thermochemical calculations for smelting metallurgical wastes such as slag from high-carbon ferrochrome production for value creation and reutilization purposes. Full article
(This article belongs to the Special Issue Ferroalloy Minerals Processing and Technology, 2nd Edition)
Show Figures

Figure 1

Back to TopTop