Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = alternating voltage phase coil (AVPC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6427 KB  
Article
Comparative Study of Distributed Compensation Effects on E-Field Emissions in Conventional and Phase-Inverted Wireless Power Transfer Coils
by Zeeshan Shafiq, Siqi Li, Sizhao Lu, Jinglin Xia, Tong Li, Zhe Liu and Zhe Li
Actuators 2025, 14(8), 384; https://doi.org/10.3390/act14080384 - 4 Aug 2025
Viewed by 798
Abstract
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase [...] Read more.
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase coil (AVPC), which employs a sequential inversion winding (SIW) structure to enforce a 180° phase voltage opposition between adjacent turns. While capacitor segmentation is a known method for E-field reduction, this work is the first to systematically evaluate its effects across both conventional and phase-inverted coils. The findings reveal that capacitor placement serves as a topology-dependent design parameter. Finite Element Method (FEM) simulations and experimental validation show that while capacitor placement has a moderate influence on traditional coils due to in-phase voltage relationships, AVPC coils are highly sensitive to segmentation patterns. When capacitors align with the SIW phase structure, destructive interference significantly reduces E-field emissions. Improper capacitor placement disrupts phase cancellation and negates this benefit. This study resolves a critical design gap by establishing that distributed compensation acts as a tuning mechanism in conventional coils but becomes a primary constraint in phase-inverted topologies. The results demonstrate that precise capacitor placement aligned with the coil topology significantly enhances E-field mitigation up to 60% in AVPC coils, greatly outperforming traditional coil configurations and providing actionable guidance for high-power wireless charging applications. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

23 pages, 9045 KB  
Article
Addressing EMI and EMF Challenges in EV Wireless Charging with the Alternating Voltage Phase Coil
by Zeeshan Shafiq, Tong Li, Jinglin Xia, Siqi Li, Xi Yang and Yu Zhao
Actuators 2024, 13(9), 324; https://doi.org/10.3390/act13090324 - 26 Aug 2024
Cited by 10 | Viewed by 4038
Abstract
Wireless charging technologies are widely used in electric vehicles (EVs) due to their advantages of convenience and safety. Conventional wireless charging systems often use planar circular or square spiral windings, which tend to produce strong electric fields (E-fields), leading to electromagnetic interference (EMI) [...] Read more.
Wireless charging technologies are widely used in electric vehicles (EVs) due to their advantages of convenience and safety. Conventional wireless charging systems often use planar circular or square spiral windings, which tend to produce strong electric fields (E-fields), leading to electromagnetic interference (EMI) and potential health risks. These standard coil configurations, while efficient in energy transfer, often fail to address the critical balance between E-field emission reduction and power transfer effectiveness. This study presents an “Alternating Voltage Phase Coil” (AVPC), an innovative coil design that can address these limitations. The AVPC retains the standard dimensions of traditional square coils (400 mm in length and width, with a 2.5 mm wire diameter and 22 turns), but introduces a novel current flow pattern called Sequential Inversion Winding (SIW). This configuration of the winding significantly reduces E-field emissions by altering the sequence of current through its loops. Rigorous simulations and experimental evaluations have demonstrated the AVPC’s ability to lower E-field emissions by effectively up to 85% while maintaining charging power. Meeting stringent regulatory standards, this advancement in the proposed coil design method provides a way for WPT systems to meet stringent regulatory standards requirements while maintaining transmission capability. Full article
(This article belongs to the Special Issue Power Electronics and Actuators)
Show Figures

Figure 1

Back to TopTop