Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = air supply bag system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5219 KB  
Article
Dynamic Multi-Output Stacked-Ensemble Model with Hyperparameter Optimization for Real-Time Forecasting of AHU Cooling-Coil Performance
by Md Mahmudul Hasan, Pasidu Dharmasena and Nabil Nassif
Energies 2026, 19(1), 82; https://doi.org/10.3390/en19010082 - 23 Dec 2025
Viewed by 352
Abstract
This study introduces a dynamic, multi-output stacking framework for real-time forecasting of HVAC cooling-coil behavior in air-handling units. The dynamic model encodes short-horizon system memory with input/target lags and rolling psychrometric features and enforces leakage-free, time-aware validation. Four base learners—Random Forest, Bagging (DT), [...] Read more.
This study introduces a dynamic, multi-output stacking framework for real-time forecasting of HVAC cooling-coil behavior in air-handling units. The dynamic model encodes short-horizon system memory with input/target lags and rolling psychrometric features and enforces leakage-free, time-aware validation. Four base learners—Random Forest, Bagging (DT), XGBoost, and ANN—are each optimized with an Optuna hyperparameter tuner that systematically explores architecture and regularization to identify data-specific, near-optimal configurations. Their out-of-fold predictions are combined through a Ridge-based stacker, yielding state-of-the-art accuracy for supply-air temperature and chilled water leaving temperature (R2 up to 0.9995, NRMSE as low as 0.0105), consistently surpassing individual models. Novelty lies in the explicit dynamics encoding aligned with coil heat and mass-transfer behavior, physics-consistent feature prioritization, and a robust multi-target stacking design tailored for HVAC transients. The findings indicate that this hyperparameter-tuned dynamic framework can serve as a high-fidelity surrogate for cooling-coil performance, supporting set-point optimization, supervisory control, and future extensions to virtual sensing or fault-diagnostics workflows in industrial AHUs. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

16 pages, 2967 KB  
Article
Study on the Effect of Non-Uniform Ventilation on Energy and Plant Growth in a Greenhouse
by Ziteng Wang, Aiqun Bao, Jialei Li, Jinhong He, Kaiwen Wang, Xinke Wang and Xianpeng Sun
Horticulturae 2025, 11(2), 166; https://doi.org/10.3390/horticulturae11020166 - 5 Feb 2025
Cited by 1 | Viewed by 2126
Abstract
The progress of local environmental regulation in protected agriculture is sluggish, particularly concerning the local air supply, which poses a significant obstacle to greenhouse energy-saving research. This study establishes a test platform for local air supply in winter and summer by integrating design [...] Read more.
The progress of local environmental regulation in protected agriculture is sluggish, particularly concerning the local air supply, which poses a significant obstacle to greenhouse energy-saving research. This study establishes a test platform for local air supply in winter and summer by integrating design principles from human settlements’ supply air bag models with crop growth requirements. By utilizing a supply air bag to direct fresh air from the air conditioning system to specific areas within the greenhouse, non-uniform ventilation is created. Research has revealed that varying air supply levels in summer exerts a significant influence on environmental conditions, crop growth, and energy efficiency. Noticeable temperature stratification and cooling effects were observed within the conditioning greenhouse. The growth of lettuce was moderately enhanced, with mid-level local air supply demonstrating superior cooling effectiveness and range compared to the other two levels. Optimal control efficacy and energy conservation were achieved through mid-level local air supply. During daytime experiments in winter, this system did not have a significant impact on the greenhouse environment; however, during nighttime experiments, it consistently provided warming effects to maintain temperatures above the minimum requirement for lettuce growth. Therefore, utilizing air supply bags at secure specific positions and implementing targeted air supply methods within cultivation areas in greenhouses can facilitate the creation of suitable local environments for crop growth while achieving energy savings. Future research in this field could focus on further refining air supply bag models to enhance energy efficiency and local environmental control effects. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

17 pages, 2642 KB  
Article
Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels
by Chiara Sanmartin, Isabella Taglieri, Alessandro Bianchi, Prangthip Parichanon, Martina Puccinelli, Alberto Pardossi and Francesca Venturi
Foods 2024, 13(20), 3260; https://doi.org/10.3390/foods13203260 - 13 Oct 2024
Cited by 6 | Viewed by 2103
Abstract
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation [...] Read more.
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation in this type of product. The purpose of this study was to investigate the effect of MAP, with or without refrigeration, to extend the shelf life of glasswort (Salicornia europaea L.) grown hydroponically (floating raft system) in a greenhouse with a nutrient solution containing 0 g/L (C) or 12.5 g/L of NaCl (T). The dry matter content, weight loss, respiration rate, biochemical composition, color, antioxidant capacity, and sensorial attributes were determined in shoots after harvest and during storage in plastic bags filled with technical air or with MAP at 4 or 20 °C for 120 h. At harvest, plants supplied with salt-enriched solution (T) showed a significant improvement in nutritional value and sensory profile. Storage in air at room temperature (20 °C) accelerated weight loss and diminished color stability, particularly in non-salinity samples (C), while MAP extended the shelf life of all the samples regardless of the storage temperature adopted. Optimal storage conditions were observed when MAP was combined with refrigeration, which allowed to effectively preserve shoots sensory acceptability for a period of about seven days. Future research could further explore the long-term effects on the nutritional value and sensory quality of S. europaea under various combinations of MAP and different storage temperatures ranging between 4 °C and 20 °C. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

17 pages, 18900 KB  
Article
Research on Factors Influencing Indoor PM2.5 Concentration in Curling Venues Based on CFD Simulation
by Xiaohui Du, Jiaxin Li, Ziying Tang and Shijing Hu
Appl. Sci. 2024, 14(8), 3446; https://doi.org/10.3390/app14083446 - 19 Apr 2024
Cited by 4 | Viewed by 1637
Abstract
This article explores the effects of outdoor PM2.5 concentration, venue airtightness and the distribution of indoor PM2.5 concentration on the curling venue of the National Aquatics Center. Research has found that when the filtration efficiency of the fresh air system is [...] Read more.
This article explores the effects of outdoor PM2.5 concentration, venue airtightness and the distribution of indoor PM2.5 concentration on the curling venue of the National Aquatics Center. Research has found that when the filtration efficiency of the fresh air system is 60%, the outdoor PM2.5 concentration increases by 20 μg/m3, an average increase of 6 μg/m3 in indoor PM2.5 concentration. When the venue air tightness is good, the outdoor air quality has no significant impact on the average indoor PM2.5 concentration. But as the number of infiltration air changes increases, the indoor PM2.5 concentration in each region shows an upward trend. The end of the air conditioning system in the competition area adopts bag air duct supply mode, which can reduce the concentration of PM2.5 in the competition area by 93%, and the moisture content is reduced to 2–2.5 g/kg, better meeting the requirements of curling competitions. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

Back to TopTop