Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = air splatter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2347 KiB  
Review
Air Quality in Dental Care Facilities: Update to Current Management and Control Strategies Implementing New Technologies: A Comprehensive Review
by Ioannis Tzoutzas, Ioannis Karoussis and Helena C. Maltezou
Vaccines 2022, 10(6), 847; https://doi.org/10.3390/vaccines10060847 - 26 May 2022
Cited by 6 | Viewed by 3303
Abstract
The quality of indoor air in healthcare facilities, with an emphasis on dental offices, attracted the attention of the scientific community in the late 1960s. Since then, it has become evident that the indoor air quality is critical in modern dental care facilities [...] Read more.
The quality of indoor air in healthcare facilities, with an emphasis on dental offices, attracted the attention of the scientific community in the late 1960s. Since then, it has become evident that the indoor air quality is critical in modern dental care facilities for limiting the spread of airborne infections, including vaccine-preventable diseases, and a key component of safety for healthcare personnel and patients. In the past decades, the role of indoor air quality has also been recognized in non-healthcare facilities, given the increasing time spent indoors by humans. During the provision of dental care services, mainly in the field of restorative dentistry, high-speed dental handpieces emitting air and water are used, producing large quantities of aerosol and hovering inside the operations area. In modern dental offices, new devices emitting air/powder for cavities improvement and cleaning as well as for periodontal prophylactic cleaning and aesthetics are used. In addition, a new therapeutic protocol for the removal of bacterial biofilm, targeting treatment for peri-implant diseases and conditions using air-abrasive decontamination technology, has been introduced in daily dental practice. The aim of this non-systemic review is to present the current state of knowledge on the nature and dynamics of air splatters and to provide an update to management and control strategies in dental care facilities, focusing on air purification and ultraviolet devices proposed and used. The findings arising from the limited number of related published articles documenting the reduction in levels of particular matter 2.5 (PM2.5), PM10 and volatile organic compounds, allow us to conclude that the continuous operation of air purifiers during and after treatment, contributes considerably to the improvement of the indoor air quality in dental care facilities. Moreover, the utilization of air purifiers is highly recommended in dental practice to mitigate spread of infections, including vaccine-preventable diseases. Frequent cleaning and maintenance of the purifier sieves and filters and frequent renovation of the indoor air through physical ventilation by mean of open windows is imperative. More research on environmental contamination and particularly on viral contamination under real dental care conditions is needed. Full article
Show Figures

Figure 1

9 pages, 1242 KiB  
Article
In Vivo Study of Aerosol, Droplets and Splatter Reduction in Dentistry
by Naeemah Noordien, Suné Mulder-van Staden and Riaan Mulder
Viruses 2021, 13(10), 1928; https://doi.org/10.3390/v13101928 - 25 Sep 2021
Cited by 12 | Viewed by 3984 | Correction
Abstract
Oral health care workers (OHCW) are exposed to pathogenic microorganisms during dental aerosol-generating procedures. Technologies aimed at the reduction of aerosol, droplets and splatter are essential. This in vivo study assessed aerosol, droplet and splatter contamination in a simulated clinical scenario. The coolant [...] Read more.
Oral health care workers (OHCW) are exposed to pathogenic microorganisms during dental aerosol-generating procedures. Technologies aimed at the reduction of aerosol, droplets and splatter are essential. This in vivo study assessed aerosol, droplet and splatter contamination in a simulated clinical scenario. The coolant of the high-speed air turbine was colored with red concentrate. The red aerosol, droplets and splatter contamination on the wrists of the OHCW and chests of the OHCW/volunteer protective gowns, were assessed and quantified in cm2. The efficacy of various evacuation strategies was assessed: low-volume saliva ejector (LV) alone, high-volume evacuator (HV) plus LV and an extra-oral dental aerosol suction device (DASD) plus LV. The Kruskal–Wallis rank-sum test for multiple independent samples with a post-hoc test was used. No significant difference between the LV alone compared to the HV plus LV was demonstrated (p = 0.372059). The DASD combined with LV resulted in a 62% reduction of contamination of the OHCW. The HV plus LV reduced contamination by 53% compared to LV alone (p = 0.019945). The DASD demonstrated a 50% reduction in the contamination of the OHCWs wrists and a 30% reduction in chest contamination compared to HV plus LV. The DASD in conjunction with LV was more effective in reducing aerosol, droplets and splatter than HV plus LV. Full article
(This article belongs to the Special Issue Coronaviruses Research in BRICS Countries)
Show Figures

Figure 1

12 pages, 3103 KiB  
Article
Splatters and Aerosols Contamination in Dental Aerosol Generating Procedures
by Pingping Han, Honghui Li, Laurence J. Walsh and Sašo Ivanovski
Appl. Sci. 2021, 11(4), 1914; https://doi.org/10.3390/app11041914 - 22 Feb 2021
Cited by 34 | Viewed by 6809
Abstract
Dental aerosol-generating procedures produce a large amount of splatters and aerosols that create a major concern for airborne disease transmission, such as COVID-19. This study established a method to visualise splatter and aerosol contamination by common dental instrumentation, namely ultrasonic scaling, air-water spray, [...] Read more.
Dental aerosol-generating procedures produce a large amount of splatters and aerosols that create a major concern for airborne disease transmission, such as COVID-19. This study established a method to visualise splatter and aerosol contamination by common dental instrumentation, namely ultrasonic scaling, air-water spray, high-speed and low-speed handpieces. Mock dental procedures were performed on a mannequin model, containing teeth in a typodont and a phantom head, using irrigation water containing fluorescein dye as a tracer. Filter papers were placed in 10 different locations to collect splatters and aerosols, at distances ranging from 20 to 120 cm from the source. All four types of dental equipment produced contamination from splatters and aerosols. At 120 cm away from the source, the high-speed handpiece generated the greatest amount and size (656 ± 551 μm) of splatter particles, while the triplex syringe generated the largest amount of aerosols (particle size: 1.73 ± 2.23 μm). Of note, the low-speed handpiece produced the least amount and size (260 ± 142 μm) of splatter particles and the least amount of aerosols (particle size: 4.47 ± 5.92 μm) at 120 cm. All four dental AGPs produce contamination from droplets and aerosols, with different patterns of distribution. This simple model provides a method to test various preventive strategies to reduce risks from splatter and aerosols. Full article
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Indoor Air Pollution with Fine Particles and Implications for Workers’ Health in Dental Offices: A Brief Review
by Diana Mariana Cocârţă, Mariana Prodana, Ioana Demetrescu, Patricia Elena Maria Lungu and Andreea Cristiana Didilescu
Sustainability 2021, 13(2), 599; https://doi.org/10.3390/su13020599 - 10 Jan 2021
Cited by 23 | Viewed by 8318
Abstract
(1) Background: Indoor air pollution can affect the well-being and health of humans. Sources of indoor pollution with particulate matter (PM) are outdoor particles and indoor causes, such as construction materials, the use of cleaning products, air fresheners, heating, cooking, and smoking activities. [...] Read more.
(1) Background: Indoor air pollution can affect the well-being and health of humans. Sources of indoor pollution with particulate matter (PM) are outdoor particles and indoor causes, such as construction materials, the use of cleaning products, air fresheners, heating, cooking, and smoking activities. In 2017, according to the Global Burden of Disease study, 1.6 million people died prematurely because of indoor air pollution. The health effects of outdoor exposure to PM have been the subject of both research and regulatory action, and indoor exposure to fine particles is gaining more and more attention as a potential source of adverse health effects. Moreover, in critical situations such as the current pandemic crisis, to protect the health of the population, patients, and staff in all areas of society (particularly in indoor environments, where there are vulnerable groups, such as people who have pre-existing lung conditions, patients, elderly people, and healthcare professionals such as dental practitioners), there is an urgent need to improve long- and short-term health. Exposure to aerosols and splatter contaminated with bacteria, viruses, and blood produced during dental procedures performed on patients rarely leads to the transmission of infectious agents between patients and dental health care staff if infection prevention procedures are strictly followed. On the other hand, in the current circumstances of the pandemic crisis, dental practitioners could have an occupational risk of acquiring coronavirus disease as they may treat asymptomatic and minimally symptomatic patients. Consequently, an increased risk of SARS-CoV-2 infection could occur in dental offices, both for staff that provide dental healthcare and for other patients, considering that many dental procedures produce droplets and dental aerosols, which carry an infectious virus such as SARS-CoV-2. (2) Types of studies reviewed and applied methodology: The current work provides a critical review and evaluation, as well as perspectives concerning previous studies on health risks of indoor exposure to PM in dental offices. The authors reviewed representative dental medicine literature focused on sources of indoor PM10 and PM2.5 (particles for which the aerodynamic diameter size is respectively less than 10 and 2.5 μm) in indoor spaces (paying specific attention to dental offices) and their characteristics and toxicological effects in indoor microenvironments. The authors also reviewed representative studies on relations between the indoor air quality and harmful effects, as well as studies on possible indoor viral infections acquired through airborne and droplet transmission. The method employed for the research illustrated in the current paper involved a desk study of documents and records relating to occupational health problems among dental health care providers. In this way, it obtained background information on both the main potential hazards in dentistry and infection risks from aerosol transmission within dental offices. Reviewing this kind of information, especially that relating to bioaerosols, is critical for minimizing the risk to dental staff and patients, particularly when new recommendations for COVID-19 risk reduction for the dental health professional community and patients attending dental clinics are strongly needed. (3) Results: The investigated studies and reports obtained from the medical literature showed that, even if there are a wide number of studies on indoor human exposure to fine particles and health effects, more deep research and specific studies on indoor air pollution with fine particles and implications for workers’ health in dental offices are needed. As dental practices are at a higher risk for hazardous indoor air because of exposure to chemicals and microbes, the occupational exposures and diseases must be addressed, with special attention being paid to the dental staff. The literature also documents that exposure to fine particles in dental offices can be minimized by putting prevention into practice (personal protection barriers such as masks, gloves, and safety eyeglasses) and also keeping indoor air clean (e.g., high-volume evacuation, the use of an air-room-cleaning system with high-efficiency particulate filters, and regularly maintaining the air-conditioning and ventilation systems). These kinds of considerations are extremely important as the impact of indoor pollution on human health is no longer an individual issue, with its connections representing a future part of sustainability which is currently being redefined. These kinds of considerations are extremely important, and the authors believe that a better situation in dentistry needs to be developed, with researchers in materials and dental health trying to understand and explain the impact of indoor pollution on human health. Full article
(This article belongs to the Special Issue Sustainability on Environmental Health and Well-Being)
Show Figures

Figure 1

Back to TopTop