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Abstract: (1) Background: Indoor air pollution can affect the well-being and health of humans.
Sources of indoor pollution with particulate matter (PM) are outdoor particles and indoor causes,
such as construction materials, the use of cleaning products, air fresheners, heating, cooking, and
smoking activities. In 2017, according to the Global Burden of Disease study, 1.6 million people
died prematurely because of indoor air pollution. The health effects of outdoor exposure to PM
have been the subject of both research and regulatory action, and indoor exposure to fine particles is
gaining more and more attention as a potential source of adverse health effects. Moreover, in critical
situations such as the current pandemic crisis, to protect the health of the population, patients, and
staff in all areas of society (particularly in indoor environments, where there are vulnerable groups,
such as people who have pre-existing lung conditions, patients, elderly people, and healthcare
professionals such as dental practitioners), there is an urgent need to improve long- and short-term
health. Exposure to aerosols and splatter contaminated with bacteria, viruses, and blood produced
during dental procedures performed on patients rarely leads to the transmission of infectious agents
between patients and dental health care staff if infection prevention procedures are strictly followed.
On the other hand, in the current circumstances of the pandemic crisis, dental practitioners could have
an occupational risk of acquiring coronavirus disease as they may treat asymptomatic and minimally
symptomatic patients. Consequently, an increased risk of SARS-CoV-2 infection could occur in dental
offices, both for staff that provide dental healthcare and for other patients, considering that many
dental procedures produce droplets and dental aerosols, which carry an infectious virus such as
SARS-CoV-2. (2) Types of studies reviewed and applied methodology: The current work provides a
critical review and evaluation, as well as perspectives concerning previous studies on health risks
of indoor exposure to PM in dental offices. The authors reviewed representative dental medicine
literature focused on sources of indoor PM10 and PM2.5 (particles for which the aerodynamic
diameter size is respectively less than 10 and 2.5 µm) in indoor spaces (paying specific attention to
dental offices) and their characteristics and toxicological effects in indoor microenvironments. The
authors also reviewed representative studies on relations between the indoor air quality and harmful
effects, as well as studies on possible indoor viral infections acquired through airborne and droplet
transmission. The method employed for the research illustrated in the current paper involved a desk
study of documents and records relating to occupational health problems among dental health care
providers. In this way, it obtained background information on both the main potential hazards in
dentistry and infection risks from aerosol transmission within dental offices. Reviewing this kind of
information, especially that relating to bioaerosols, is critical for minimizing the risk to dental staff
and patients, particularly when new recommendations for COVID-19 risk reduction for the dental
health professional community and patients attending dental clinics are strongly needed. (3) Results:
The investigated studies and reports obtained from the medical literature showed that, even if there
are a wide number of studies on indoor human exposure to fine particles and health effects, more
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deep research and specific studies on indoor air pollution with fine particles and implications for
workers’ health in dental offices are needed. As dental practices are at a higher risk for hazardous
indoor air because of exposure to chemicals and microbes, the occupational exposures and diseases
must be addressed, with special attention being paid to the dental staff. The literature also documents
that exposure to fine particles in dental offices can be minimized by putting prevention into practice
(personal protection barriers such as masks, gloves, and safety eyeglasses) and also keeping indoor
air clean (e.g., high-volume evacuation, the use of an air-room-cleaning system with high-efficiency
particulate filters, and regularly maintaining the air-conditioning and ventilation systems). These
kinds of considerations are extremely important as the impact of indoor pollution on human health is
no longer an individual issue, with its connections representing a future part of sustainability which
is currently being redefined. These kinds of considerations are extremely important, and the authors
believe that a better situation in dentistry needs to be developed, with researchers in materials and
dental health trying to understand and explain the impact of indoor pollution on human health.

Keywords: indoor air quality; fine particles; indoor pollution; SARS-CoV-2; occupational exposure;
dentistry workers

1. Introduction

After the identification of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) in humans in Wuhan, China, at the end of 2019, as a new viral group strain, this
virus spread all over the world [1]. This was possible because of the rapid virus transmis-
sion that can take place via direct and indirect contact, through respiratory droplets and
airborne transmission [2,3]. Simultaneously, different research studies [4–7] on various
aspects of SARS-CoV-2, such as airborne virus sampling, identification methods, spreading,
and control approaches, have been conducted, in order to prevent coronavirus transmission.
Currently, in the pandemic, different groups of researchers are focused on testing methods
and epidemiological and pharmacological studies, which are being widely investigated in
order to sustain prevention and organizational methods for SARS-CoV-2 transmission con-
trol [8,9]. While no specific antiviral drug is available for the treatment of the coronavirus
disease (COVID-19) [10–12], and the vaccines produced are just beginning to take effect in
protecting people against the novel coronavirus SARS-CoV-2, there are different opinions,
observations, and assumptions. Examples of assumptions based on preliminary studies are
those made about the correlation between exceedance of the air quality limits for PM10 and
an increasing number of hospitalizations because of COVID-19 disease, about the existence
of a link between air pollution with PM2.5 and the level of lethality of COVID-19 [13], and
concerning the fact that airborne particulate matter can act as a vehicle for transmission of
the SARS-CoV-2 virus [14,15]. On the other hand, considering that the COVID-19 pandemic
is currently ongoing, it is still too early to generalize conclusions based on a limited number
of observations. Therefore, these currently remain hypotheses to be verified over time.

What is certainly known at this time is that air pollution, which is mostly generated
by anthropogenic activity, has become an overwhelming issue, taking into consideration
the effects on human health and climate change over a period of years. World Health
Organization (WHO) data show that 9 out of 10 people breathe in high levels of polluted
air and seven to eight million premature deaths occur worldwide each year, as an effect
of exposure to both ambient and indoor air pollution [16]. An accurate estimation of air
pollution is a function of a specific country’s industrial aspects and prevention level, being
greater in mining areas such as New South Wales, Australia [17], or in high-traffic-volume
on both rural and urban roadways [18,19]. On the other hand, indoor air pollution is one
of the world’s largest environmental issues.

Regarding the action of viruses, it must be mentioned that, after the first discovered
virus in 1901, statistically, in each year, three or four new viruses have been found [20]. The
current pandemic increased both the need to identify and improve the gaps in knowledge
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about this field; specifically, knowledge on the behavior of airborne particles of a biological
origin containing viruses and the indoor air quality of hospitals and healthcare facilities. In
this context, particulates from indoor pollution and their source measurements and health
effects have become more and more important. The present paper presents a comparative
review of sources, properties, measurements, and negative effects on human health because
of fine particle air pollution, with particular attention being paid to the harmful effects of
indoor air quality pollution on dental staff in the framework of dental offices.

According to the United States Occupational Safety and Health Administration, in
the framework of the actual pandemic crisis, dentistry is classified as one of the very
high-risk occupations for transmission of the disease, due to the aerosols produced during
dental procedures [21]. Aerosol, splatter, and droplet generation occurs throughout dental
procedures. According to the research conducted by Harrel in 2004 [22], potential sources
of airborne contamination during dental treatment are dental instrumentation, saliva
and respiratory sources, and the operative site. Concerning the dental instrumentation,
the same author has indicated that routine cleaning and sterilization procedures should
eliminate contamination [22]. Normal dental practices with the potential to aerosolize
saliva will cause airborne contamination with organisms from different sources, such as
fluids in the mouth; dental plaque, both supragingival and in the periodontal pocket; nose;
throat; and respiratory tract [22,23]. Despite the fact that Mycobacterium tuberculosis (the
bacterium that causes tuberculosis (TB)) was considered the most serious potential threat
present in aerosols [22,24], recent studies [25] simulating the transmission of coronaviruses,
the measles virus, the influenza virus, Mycobacterium tuberculosis, and Legionella pneumophila
in dental clinics via mathematical modeling indicated that the risk for the transmission of
the bacteria M. tuberculosis and L. pneumophila was lower with respect to the risk for the
measles virus transmission [25]. In the framework of the study, scenario-specific analyses
considered high patient infectiousness, the absence of respiratory protection, and poor
indoor air quality. These circumstances conducted to high transmission probabilities
estimated measles virus of 100%, for coronaviruses 99.4%, influenza virus, 89.4%, and
for M. tuberculosis, 84.0%. An important parameter indicated for the indoor airborne
transmission of viruses in the dental clinic is the CO2 level [25]. On the other hand, the CO2
level corresponding to a given COVID-19 infection risk has not yet been identified [26].
Therefore, further research for obtaining a deeper understanding of the transmission of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from aerosols generated by
dental practices is needed.

The operative site, because of the instrumentation used, such as dental handpieces,
ultrasonic scalers, air polishers, and air abrasion units, produces visible aerosols [22,27].
The material removed from the operative site becomes aerosolized by the action of the
rotary instrument, ultrasonic vibrations, or the combined action of water sprays and
compressed air [22]. Therefore, a significant number of aerosols are produced, which reach
health care dental staff and patients.

The U.S. Environmental Protection Agency (US EPA) has demonstrated that indoor air
pollution can be two to five times worse than typical outdoor air pollution [28]. Indoor air
pollution with different chemicals, including gases, volatile organic compounds (VOCs),
particulate matter (PM), fibers, and organic and inorganic contaminants [29], can negatively
affect the Indoor Air Quality (IAQ). Moreover, various particles of biological origin carry
infectious microbes and microbial metabolites also affecting the IAQ. This frequently
happens in dental offices, as was previously evidenced by illustrating sources of aerosols
produced during dental procedures, as well as because of the poor air quality resulting
from the use of equipment and disinfectants. Consequently, both particles of biological
origin and existing chemicals can pose significant risks to the health, safety, and wellbeing
of dental staff and patients. Potential health hazards caused by the air quality problems in
dentistry are described in the second part of the present paper.

The objective of this review was to provide an overview of the evidence in the literature
on indoor air pollution with fine particles in dental healthcare and their effects on dental
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staff. During the review, factors affecting the IAQ in dentistry and the main potential
hazards for dental workers were considered. In this context, the transmission of SARS-CoV-
2 from aerosols generated by dental practices was also discussed. Therefore, in the current
research, a review of dental literature concerning indoor pollution with fine particles was
performed. In different databases, including PubMed, Medline, Web of Science, and Google
Scholar (but not limited to these), key words such as indoor air pollution, dental staff,
hazards, aerosols, and SARS-CoV-2 [30] were used in different combinations, in order to
obtain references for the review. A total of 270 papers were initially identified. Of these,
131 articles were selected for review as they fitted the inclusion/exclusion criteria for this
study. Included studies in the framework of the present research must have been published
in the last 10 years (only 32% of the reviewed papers were published before 2016, while
20% of the reviewed papers were published in the last 2 years). Exclusion criteria for the
reviewed papers were studies published more than 10 years ago (with one exception) and
studies published in a language other than English.

2. Factors Affecting the Indoor Air Quality
2.1. Outdoor Sources of PM10 and PM2.5 Pollution

Particulate matter emissions are formed in the atmosphere in different ways. Exam-
ples of this are physicochemical reactions (such as distillation, combustion, calcination,
condensation, and sublimation), which are called fumes; the disintegration of a parent
material (crushing, grinding, and blasting), if considering dust; incomplete combustion
(called smoke); and vapor condensation that produces a liquid particulate (mist and fog),
or releases biological organisms contained in solid or liquid particulate (bioaerosols) [31].
Exposure to PM pollution outdoors has been extensively investigated compared to pollu-
tion in indoor environments, even though it was recently evidenced that the level of indoor
PM concentrations is higher than that of outdoor PM [32].

The main sources of outdoor pollution are transport, non-renewable energy sources,
residential heating systems, waste incineration, and other industrial processes. Traffic is the
leading source of pollution, mainly occurring in urban agglomerations. Emissions from this
source consist of both gaseous compounds and volatile organics (benzene), and PM10- and
PM2.5 containing metals. The greatest impact is observed in areas with overcrowded traffic
lanes, where the dispersion of pollutants is difficult to achieve [33,34]. A major contribution
to particulate pollution also arises from construction activities, such as building or road
rehabilitation [35]. Therefore, the anthropogenic sources are the main contributors to air
pollution with fine particles, especially in urban areas [36].

Both indoor and outdoor particulate matter concentrations and their dynamic trend
are linked to meteorological conditions and the performed activities. The concentration
of particulates of different sizes was found to be the highest in wintertime, especially due
to anthropogenic activities; other factors affecting air pollution are wind conditions (for
instance, a low wind speed may promote a longer permanence of particles in polluted air
of cities) and high humidity levels in ambient air compared with other seasons. A study in
this regard was presented by Massey in 2012, illustrating such trends based on monthly and
seasonal variations of indoor and outdoor particulate concentrations in India considering
ordinary activities of the people [32]. Outdoor and indoor fine particle concentrations for
similar temperatures and activities are illustrated in Table 1 [32].

Table 1. Air pollution indicators (particulate matter PM10 and PM2.5) in Northern India (Agra).

Indicator Category India Outdoor India Indoor Observations

PM2.5 µg m−3 Annual average
concentration 2012 160 161 Health effects on occupants of the houses

with a higher concentration level of both
PM2.5 and PM10 were more aggressivePM10 µg m−3 Annual average

concentration 2012 255 247
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The atmospheric particulates sampled in China for four months in order to compare
chemical compositions and sources for PM2.5 and PM10 indicated mean levels of PM2.5
and PM10 of 81 and 109 µg/m3, respectively [37]. Results published in 2018 concerning
PM2.5 and PM10 air pollution showed concentrations higher than the health threshold
levels regulated by national and international standards [38]. During the sampling period,
the Air Quality Index (AQI) was strongly correlated with PM2.5 (Pearson’s coefficient
r = 0.94) rather than PM10 concentrations. The PM2.5/PM10 ratios were approximately 0.7,
revealing fine particle pollution.

2.2. Indoor Sources of PM10 and PM2.5

WHO has estimated that almost half of the world’s population (about 3 billion people)
uses polluting technologies and solid fuels for cooking, heating, and lighting, which are
a major source of air pollution for indoor environments [39]. Sources of household PM
are both indoor and outdoor sources [40]. Consequently, the quality of the indoor air is
influenced by the outdoor air quality [41] and the indoor sources, such as heating/cooling,
cooking facilities using fossil fuels (oil, gas, kerosene, coal, and wood), smoking, building
materials and furniture, carpets, cleaning products, maintenance products, and personal
care [42]. Office equipment, including computers, printers, and machines, was added to the
previously mentioned sources of indoor air pollution, in accordance with the activities that
take place in the indoor environment. Reported emissions from the illustrated sources are
volatile and semi volatile organic chemicals (VOCs and SVOCs, respectively), and ozone
and particulate matter. Pollutants such as phthalate esters, brominated flame retardants,
organophosphate flame retardants, and polycyclic aromatic hydrocarbons (PAHs), together
with pets and an inadequate humidity that can cause the development of mold, are signifi-
cant contributors to negative effects on a human’s health because of indoor exposure to
air pollutants [43]. Specifically, unlike the external environment, some important indoor
pollutants are those from biological sources (animals, pollen, pathogens through water
vapor, air conditioning systems, humidifiers, and carpets). Results of investigations in
school environments have shown that the particulate matter has a bacterial content which
is much higher when students are present in classes compared to the values recorded when
the classes are empty; the same trend was observed by the authors concerning the presence
of fungal species [43,44].

Scientific works were conducted concerning indoor air pollution and people’s ex-
posure in different environments [45]. Generally, indoor PM10 contains different levels
of As, Ni, Cd, Pb, Al, B, Zn, Mg, Sb, F−, ClO2−, NO3−, and SO4

2−, while indoor PM2.5
contains 50% organic carbon, 3% elemental carbon, about 30% sulphates and nitrates,
and 15% ammonium ion and water; the total metal content of PM is about 1% (2/3 iron,
zinc, vanadium, titanium, silver, copper, manganese, and chromium) [46]. It should be
emphasized that although they are present in small quantities, metals have an important
negative effect on human health.

In addition to the dentists’ indoor exposure to different chemicals from various sources,
as previously indicated, the dental staff are highly exposed to disease transmission be-
cause of aerosols that are produced during dental procedures and that may be virus- and
bacteria-like particles. While there are not many specific studies evidencing with certainty
that aerosols generated from dental care led to the transmission of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the spread of different diseases through an airborne
route in dental offices has already been documented. Consequently, some standard guide-
lines for infection control in dental facilities have already been adapted to the SARSCoV-2
pandemic [30] at a European and international level. Given the urgency of the pandemic,
but also based on previous evidence regarding the assessment of exposure to influenza
virus aerosols during routine patient care, the risk for the transmission of coronaviruses in
dental offices must be carefully considered. Moreover, according to some authors, aerosols
from dental clinics can play a major role in the transmission of SARS-CoV-2 [30].
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3. Results
3.1. Health Aspects of Air Pollution with PM

In 2013, the International Agency for Cancer Research (IARC) classified particulate
matter (PM) as carcinogenic to human beings. This was possible as there was enough
evidence from both experimental animal studies and clinical studies involving human
subjects showing that air pollution with PM is mutagenic and carcinogenic to humans [46].
Exposure to air pollution and especially high levels of particles are associated with the
development of cancer through several processes, such as oxidative stress and inflammatory
processes at the cellular level [47]. Air pollution accounted for about 5 million deaths in
2017 due to stroke, heart disease, lung cancer, and chronic respiratory disease [48,49].
Relationships between air pollutants, the air quality, and the impact on a human’s health
are evidenced in Figure 1.
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The coarse fraction of suspended particles—PM10—can affect the airways and lungs.
PM2.5 is a more pressing problem because it can enter the respiratory system up to the
alveoli and is absorbed into the bloodstream or remains in the lung tissue for long periods
of time. Larger particles are mainly deposited in the upper airway [50]. Therefore, in the
scientific community, there is important and documented information demonstrating that
air pollution with fine particulate matter is one of the risk factors responsible for many
health problems, often producing increases in mortality rates [51–53]. According to recent
investigations conducted during the pandemic, high levels of air pollution could influence
the spreading of the coronavirus disease and the increase of the vulnerability and mortality
rates due to SARS-Cov-2 infection [54–56]. Other studies have shown that mortality associ-
ated with COVID-19 depends on comorbidities, including cardiovascular problems such
as arterial hypertension, diabetes mellitus, obesity, and respiratory conditions including
asthma and chronic obstructive pulmonary disease [57–59].

A criterion assessing [60] the ratio of a comparison of PM levels in indoor and outdoor
I/O environments is an index representing their differences. This ratio displays a high
level of variation due to numerous factors, such as building design, locations, and different
indoor activities [61]. This ratio has permitted a comparison of the dynamics of indoor and
outdoor PM of different buildings. In terms of health, a value of less than 1 shows that the
building is needed to reduce outside PM exposure [62].

Human health effects are directly linked to particles’ size and influenced by their
composition. Some examples referring to the specific negative effects on a human’s health
correlated with the dimension of the particle aerodynamic diameter (a.d.) are synthetized in
Table 2. Concerning the particle dimensions, except for heavy dust (aerodynamic diameter
higher than 100 µm) and gas molecules (a.d. < 0.001 µm), particles such as dust, biologi-
cal contaminants, and particulate contaminants have a size of between 0.05 and 100 µm.
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Table 2 presents the main negative effects on humans’ health, taking into consideration
different particle size intervals.

Table 2. Effects on humans’ health considering different particle size intervals.

Contaminants Aerodynamic
Diameter (µm)

Health Effects of Air Pollution from
Particulate Matter

1. Dust

Suspended
atmospheric dust 0.005–1 Chronic obstructive pulmonary disease [63,64]

Setting dust 1–100 Respiratory and heart diseases depending on
a.d. size [65]

2. Bioaerosols (including
allergen)

Pollen 10–100 Asthma, rhinitis, and allergic conjunctivitis [66]
Mold spores 8–80 Sneezing, watery eyes, and asthma [67]
House dust 0.1–10 Asthma rhinitis and others [68]

Bacteria 0.05–10 Various good and bad effects [69]
Viruses 0.05–0.5 219 species inducing various diseases [20,70]

3. Particulate contaminants

Cement dust 0.5–100 Respiratory diseases [71]
Fly ash 1–100 Respiratory effects [72]

Oil smoke 0.05–0.7 Affect respiratory system; after long exposure,
organs can be affected [73]

Smog 0.01–1.2 Respiratory diseases [74]

Tobacco smoke 0.01–1 Heart and lung disease, stroke, diabetes, and
chronic pulmonary disease [75]

Soot 0.01–0.5 Inflammatory pulmonary pathway [76]

As illustrated in Table 2, all types of particles primarily affect respiratory pathways.
Depending on the particle size and exposure time, the effects on humans can stem from
inflammation [76] until very aggressive disease, such as lung cancer. In many cases, after
long-term exposure, different organs, such as the liver [75,77], are affected. On the other
hand, the effects of exposure to certain chemical species on the particle composition, such
as black carbon [77], have largely only been studied in the last few years [78].

Short-term exposure could determine the inflammatory reactions at the lung level,
adverse effects on the cardiovascular system, increase in the number of cases of chronic
obstructive pulmonary disease (COPD), number of hospitalizations, and increased risk of
stroke and lung cancer [73].

Long-term exposure leads to a decreased life expectancy through increased cardio-
pulmonary pathology. There are three important mechanisms [79] by which the particles
generate effects on human health: (a) The inhalation of PM leads to an inflammatory
response in the lungs and therefore to the release of cytokines (a large group of proteins,
peptides, or glycoproteins that are secreted by specific cells of the immune system, involved
in the development and regulation of immune responses) in the circulatory system; (b)
the second mechanism involves the activation of the neuro-vegetative system, which can
affect the blood pressure and heart rate; and (c) the third mechanism involves the direct
transport of smaller particles into the blood stream, where they interact with blood vessels
and various blood cells. The same mechanisms and effects are encountered in the case of
exposure to indoor air pollution [79]. Because there are many sources of allergens or molds
in indoor environments, the organic content of PM is high and can lead to allergic and
infectious reactions and toxic effects (caused by the inhalation of mycotoxins) [80]. Certain
substances, such as arsenic, cadmium, nickel, and polycyclic aromatic hydrocarbons, are
genotoxic carcinogens for humans, and thresholds cannot be identified until there are no
risks [81].

Indoor exposure to fine particles and health risks are the subject of numerous research
studies and ongoing regulatory actions [82]. It is also worth mentioning the criteria devel-
opment for risk assessment tool selection in work environments and ongoing actions that
has occurred in the last two decades [82–85]. Other studies evidence how outdoor pollutant
levels may have an impact on the indoor concentrations [86], specifically presenting the
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influences of different chemicals from indoor pollution on humans’ health, for instance, the
toxic heavy metals that can negatively affect dental health [86]. Dental workers’ exposure to
PM pollution in indoor environments has been less extensively studied, although exposure
in indoor environments to PM is higher than outdoors due to the higher concentrations of
PM in these specific ambientes [87].

The smaller number of studies on the effects of pollution from certain micro-environments
(for instance, dental offices and beauty salons) in which activities with a potential impact
on some professional categories are carried out requires an intensification of research
efforts in this field. Other examples where people spend most of their time indoors and
environments that affect sensitive categories of the population are kindergartens, schools,
and nursing homes. The following paragraphs illustrate an example of a professional
category constantly exposed to high levels of indoor air pollution—dental staff.

3.2. Indoor Air Pollution in Dentistry
3.2.1. Source of Occupational Exposure in Dental Offices and Potential Hazards

Dental healthcare workers are professionals experiencing multiple exposures to a
large range of airborne contamination [88] leading to various occupational diseases. The
occupational diseases that appear as a result of indoor pollution increase due to materi-
als and dental equipment services. Indoor particles are a complex mixture of extremely
small particles and liquid droplets [89]. Concerning the organic components, these are
microorganisms and allergens, while the chemical components can arise from outdoor or
building materials and furniture, cleaning products, cigarette smoke, combustion appli-
ances, etc. Short-term exposure to airborne contamination produces health effects, such
as headaches, fatigue, and congestion. The health problems after long-term exposure are
more aggressive, having consequences such as asthma, lung cancer, and heart disease. In a
dental environment with both particulate and gaseous contaminants, combined aerosols
are formed. Dental aerosols include components of nasopharyngeal secretions, saliva,
plaque, blood, tooth components, and restorative or other materials used in the dental
procedures [90]. Dentistry involves the use of dental instruments such as turbine burs,
drills, ultrasonic scalers, and abrasion and air polisher units, which are aerosol producers.
Airborne contaminants can be released during daily dental procedures, such as drilling
and scaling, and during work disinfection. The hazards existing in dentistry are catego-
rized as chemical, physical, biological, mechanical, and psychological [91]. As physical
hazards, cuts or puncture wounds from needles and sharp instruments and eye injuries
from projectiles can be mentioned [92]. Ionizing (X-rays) and non-ionizing radiation (visi-
ble and UV light) [93] which affects dental health care providers is another example of a
physical hazard. The noise produced by specific devices used in dentistry, such as high-
and low-speed hand pieces, ultrasonic scalers, vibrators, and amalgamators, can have
negative consequences on humans’ health in the form of hearing damage. Noise levels in
dental offices and laboratories are considered close to the limit of hearing loss (85.0 dB) [94].
The mechanical-type hazards leading to musculoskeletal problems are due to dentists’
improper working posture [95].

Among dental workers, dental technicians are professionals with multiple exposures
to various occupational diseases. The occupational diseases appear as a result of indoor
pollution increase due to materials and dental equipment services. Chemical hazards can be
organic, including gases, resins, and solvents, and inorganic, such as mercury, other metals,
and hydrogen peroxide [96]. Biological hazards can occur due to cross contamination,
indicating the transmission of infectious agents between patients and staff in clinical
environments involving 16 infections and allergens of biological origin [97]. The cross
contamination has a high likelihood of being produced through airborne particles in the
time that many procedures are performed in dental set up. Aerosols, which are solid and
liquid particles with a particle size of 50 µm or less, are formed by humans, instruments, or
machines [98,99]. Since the generation of aerosols by humans occurs because of breathing,
talking, sneezing, or coughing, these aerosols can contaminate large surfaces. In the dental
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microenvironment, there are respiratory penetrable routes with small aerosol particles, with
an important pathogenic risk [100]. Certain factors increase the chances of getting infected,
including the host’s immune response and dose, and the virulence and pathogenicity of
the micro-organism.

3.2.2. Pathogenic Potential of Aerosols

Dental aerosols contain viruses [101], as well as bacteria and fungi, representing a
cross-infection risk factor for dental professionals [102,103]. Important bacterial pathogens
are Mycobacterium tuberculosis, Streptococcus pyogenes, Corynebacterium diphtheriae, and Neis-
seria meningitidis. Such pathogens are transmitted by an airborne route. Dental aerosols
have been found to contain virus associated with dangerous diseases, such as the influenza
virus, cytomegalovirus, hepatitis virus, herpes simplex virus, and Epstein–Barr virus [104].
The presence of fungi is also reported in studies and found to be an important risk for
health care workers [105]. In these circumstances, it is important to identify and implement
specific procedures in order to reduce the production of potentially infectious aerosols
during dental procedures for protecting both dental workers and patients’ health. Var-
ious recommendations have been proposed in this regard, according to three defense
levels [106,107]. These recommendations include the regular use of personal equipment
for protection, pre-procedural mouth rinse protocols, and high evacuation devices. A
complete picture of hazards needs to mention stress and excessive work, which can give
rise to different psychological problems, especially in the pandemic crisis, during which
dentistry has been classified as one of the very high-risk occupations for SARS-Cov-2
transmission [108].

Each type of chemical and material used in laboratories may contaminate the human
body in different ways, leading to pathological consequences [109]. An estimation of the
chemical hazard of dental technicians presumes dose addition to estimate cumulative
risks from exposure to multiple chemicals, considering dose-dependent correlations of
the investigated chemicals [108]. Knowing more about contaminants, as well as about the
transmission route of different diseases, is the first step in understanding how to manage
the occupational hazards and their control in the benefit of health. Table 3 presents a
summary of the existing hazards in dental environments and strategies to keep them under
control [110].

Table 3. Main potential hazards in dentistry and their control.

Potential Hazard Due to Indoor Air Pollution Control Methods

1 Exposure to respiratory disease through airborne
transmission

Employee training to use respiratory protective equipment
and apply appropriate cleaning routines

2 Exposure to environmental biological contaminants from
ventilation systems

Periodic cleaning of ventilation systems in order to detect
and remove the mold

3 Exposure to respiratory infectious disease through droplet
transmission

Using appropriate medical protection equipment (gloves,
glasses, and masks)

4 Exposure to disinfectants and cleaning agents in routine
cleaning activities Strict schedule for well-maintained ventilation

5 Exposure to metal or silica components in working
materials

Disposal and replacement with an equivalent product
Ensuring local exhaust ventilation

6 Exposure to freshener products Replace the air fresheners and sprays with products that
contain less harmful chemicals

7 Exposure to mercury from mercury-containing amalgams Replacing mercury-containing products with some less
harmful equivalents

Although the respiratory system is the prevalent recipient of chemicals as fine pow-
der of silicate, aluminum oxides, acrylic compounds, alloys, and hard metals that are
polished, casted, or sandblasted, skin is also exposed to resins and waxes at high tem-
peratures and may be the subject of allergic reactions and contact dermatitis [111]. There
are multiple investigations that measure the exposure in dental technicians by various
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methods, including air dust, hair analyses for metal concentrations, the urine elimination
of metal, magneto-pneumography, etc., revealing the ferromagnetic alloys deposited in the
lung [112,113].

3.2.3. Chemical Hazards in Dental Workers

Of the occupational hazards among clinical dental staff, the potential chemical risk
cannot be neglected and generally refers to beryllium, silica, natural rubber latex powder,
formaldehyde, and mercury. The inhalation of dust containing free silica leads to silicosis,
while a small amount of beryllium can lead to chronic beryllium disease (CBD). Generally,
all metal components (especially heavy metals) of dental alloys, even in small amounts,
involve allergic reactions and/or toxic substances [113]. Polymeric materials, such as
acrylics and various resins [113,114] used in restorative dentistry, can act as allergens that
induce asthma and parasites on the fingers; this can potentially happen, especially in the
case of incomplete polymerization after the setting of chemically initiated materials and
adhesives by mixing two components. Free monomers can cause a wide range of skin and
eye irritations or mucous membranes. In addition, central nervous system disorders have
been evidenced among dental workers. Formaldehyde used for disinfection may cause
vomiting and eye irritation, as well as xylene in endodontic retreatment as a gutta-percha
solvent [114].

3.2.4. Dental Technicians and Their High Risk of Developing Occupational Illness
Respiratory Diseases

Dental technicians, being exposed to occupational dust and chemicals, are at a high
risk of developing respiratory diseases. It is well-known that silicosis and extrinsic allergic
alveolitis can frequently occur among dental staff. The first occupational disease identified
in dental technicians was pneumoconiosis [115], reported in 1939. It is caused by the in-
halation of dust particles with a 0.2–5 µm diameter, mostly silicate, but heavy metals were
also identified. Three clinical forms of silicosis are recognized, including acute silicosis,
simple chronic silicosis, and chronic silicosis with progressive massive fibrosis [116]. The
typical silicosis (simple chronic silicosis) has a late clinical onset, with a period of latency
of 10 years of exposure, when small nodules appear in the upper lobes of the lungs. Most
of them remain confined to the initial area, rarely forming coalescent nodules. Histologi-
cal changes in the lung show collagen nodules with chronic inflammatory infiltrate and
variable interstitial lung fibrosis. When interstitial fibrosis prevails, underlying interstitial
pneumonitis is suspected. With special techniques, such as polarized light, silicate particles
can be revealed under the microscope due to their optical properties. For the diagnosis of
pneumoconiosis, clinical symptoms are correlated with imagistic investigations for quan-
tifications of lung opacities by chest radiography or high-resolution computer tomography.
Because of the multiple agents involved, the pathogenesis of disease is complex, and the
burden of each dust component remains under debate. The respiratory function is often
impaired, from mild to moderate, depending on the host’s biological factors and super-
imposed risk factors, e.g., smoking. Silicosis is a risk factor for other respiratory diseases,
such as dyspnea, tuberculosis, bronchial infections, chronic obstructive pulmonary disease,
and heart failure [117].

Dental technicians’ pneumoconiosis is most often related to exposure to metallic dusts,
specifically cobalt, chromium, and molybdenum, and they may be symptom-free for some
time. In vivo exposure to chromium, nickel, and cobalt metals may contribute to genotoxic
damage in lymphocytes and exfoliated nasal cells. Dental technicians’ pneumoconiosis
prevalence varies widely, most probably due to differences in the exposure time, level of
metal dust in the dental laboratories, presence of exhaust ventilation, and use of different
radiological modalities in diagnosing pneumoconiosis. It may be caused not only by expo-
sure to metal dusts, but also by exposure to silica, plaster, wax and resins, chemical liquids,
and methyl methacrylate, currently encountered and used in laboratory work [113]. Open
lung biopsy and mineralogical analyses have been performed in two cases of dental tech-
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nicians diagnosed with pneumoconiosis [118]. An increased accumulation of silicon and
phosphorus was found in both cases Mineralogical analysis of the lung biopsy disclosed
high amounts of chromium, cobalt, and silica particles, suggesting that the combined
effects of heavy metal dusts and silica particles generated pneumoconiosis. Occupational
exposure to beryllium and aluminum has also been related to pneumoconiosis. Recently, a
specific case of pneumoconiosis caused by exposure to indium has been described [116].

Chronic beryllium disease is another pulmonary and systemic granulomatous occupa-
tional disease that occurs after prolonged exposure to lower levels of beryllium and may
become clinically manifested a long time after the initial exposure. An early diagnosis of
chronic beryllium disease may be accomplished by a beryllium lymphocyte proliferation
test that can identify beryllium sensitization. For other chemicals, sensitization tests need
to be developed, depending on detectable changes in immune cells.

The deposition of silicon and aluminum in lung and salivary glands may be incrimi-
nated in developing Sicca syndrome [119].

In addition to the most frequently encountered occupational respiratory diseases, the
risk for cancer of the lung, nose, and pleura is presumably increased in dental technicians,
knowing that nickel, beryllium, and chromium compounds are on the list of carcinogenic
agents published by WHO [120]. Like pneumoconiosis, cancer is also delayed years after
exposure. Other occupational diseases that have been reported among dental technicians
are asthma and chronic bronchitis [121–125].

Skin Diseases

Exposure to metals, resins, ceramics, and (meth)acrylates are known to cause skin
disorders among those with the occupation. Dental technicians have twice the risk of
hand eczema of the general population. In a large retrospective study, most of the dental
technicians reported skin exposure to uncured (meth)acrylates and skin contact [126],
grinding dust from the same material. Occupational allergic contact dermatitis due to
phenylenediamines has also been documented.

Neuropathies

Methyl methacrylate is known to cause sensory disturbances in the fingers of dental
technicians who use this resin. Extensive and repeated skin and inhalational exposure of a
methyl methacrylate monomer may induce peripheral neuropathy in dental technicians
with a long work history [127].

Muscular Disorders

Dental personnel used to be exposed to the inhalation of metallic mercury vapors.
The skeletal muscle of five dental technicians presenting symptoms of chronic exposure to
mercury was investigated. Muscle lesions were found, which could have been secondary
to neurological involvement, to ischemia caused by capillary lesion, and/or to a direct
effect of mercury on muscle protein fibbers [128,129].

Modern dental laboratories try to limit indoor pollution and reduce exposures and
diseases among dental technicians, but chemical hazards and equipment such as dust
collectors, dust extractors, dental laboratory turbines, dental milling machines, dental
casting machines, ovens, drilling machines, and amalgamators are still leading to significant
pollution and health risks.

It is important to understand that the health of workers and patients is no longer only
an individual-level issue, with its impact and relations being a future part of sustainability
which has recently been redefined [130,131].

4. Conclusions

The synergistic approach of both indoor and outdoor pollutants is a challenge, espe-
cially in the case of the particulate matter concentration, with real implications regarding
the short- and long-term measures to be taken in order to reduce the exposure impact,
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specifically in pandemic and post-pandemic periods. The degree of knowledge concerning
the link between these two types of pollution is limited. More studies regarding the pan-
demic, when more people are spending more time in indoor environments, are needed for
the development of an appropriate assessment of the indoor/outdoor pollution impact
on human health. Even if, concerning the occupational exposures of dentists, modern
technologies (such as 3D printing) are replacing the traditional methods in dental laborato-
ries, which may have an important contribution to reducing hazards among professionals,
deeper research focused on their exposure to viral particles is required. This is an emergent
issue for scientists in the actual context since, according to the present evidence (and con-
sidering that routine dental procedures involve aerosol generation), dentistry and dental
hygiene are considered two occupations with the most risk of contracting the SARS-CoV-2
virus, with the transmission of this virus taking place via an airborne route.

By identifying and implementing strategies to reduce human exposure (strategies that
consider different actions, such as high-volume evacuation, the use of the air-room-cleaning
system with high-efficiency particulate filters, regularly maintaining the air-conditioning
and ventilation systems, and medical protection for the employees), it can be ensured
that human health is protected, improving people’s quality of life (and health). The
results of this review indicate that the control of aerosols in dental offices must become
a standard part of the infection control procedures existing in dental healthcare facilities
as exposure to indoor particles can place the dentist at high risk of contracting serious
disease. Professionals responsible for designing, planning, and managing specific actions
with real consequences for improving the indoor air quality can contribute to public health
protection through their work.
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62. Jeričević, A.; Gašparac, G.; Mikulec, M.M.; Kumar, P.; Prtenjak, M.T. Identification of diverse air pollution sources in a complex
urban area of Croatia. J. Environ. Manag. 2019, 243, 67–77. [CrossRef] [PubMed]

63. Moreno, T.; Trechera, P.; Querol, X.; Lah, R.; Johnson, D.; Wrana, A.; Williamson, B. Trace element fractionation between PM10
and PM2.5 in coal mine dust: Implications for occupational respiratory health. Int. J. Coal Geol. 2019, 203, 52–59. [CrossRef]

64. Cullinan, P. Occupation and chronic obstructive pulmonary disease (COPD). Br. Med. Bull. 2012, 104, 143–161. [CrossRef]
[PubMed]

65. Khan, R.K.; Mark, A. Strand Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013.
[CrossRef]

66. Berger, U.; Karatzas, K.; Jaeger, S.; Voukantsis, D.; Sofiev, M.; Brandt, O.; Zuberbier, T.; Bergmann, K.C. Personalized pollen-related
symptom-forecast information services for allergic rhinitis patients in Europe. Allergy 2013, 68, 963–965. [CrossRef]

67. Weinhold, B. A Spreading Concern: Inhalational Health Effects of Mold. Environ. Health Perspect. 2007, 115, A300–A305.
[CrossRef]

68. Acevedo, N.; Zakzuk, J.; Caraballo, L. House Dust Mite Allergy Under Changing Environments Allergy Asthma. Immunol. Res.
2019, 11, 450–469. [CrossRef]

69. Wang, H.; Wei, C.-X.; Min, L.; Zhu, L.-Y. Good or bad: Gut bacteria in human health and diseases. Biotechnol. Biotechnol. Equip.
2018, 32, 1075–1080. [CrossRef]

70. Woolhouse, M.; Scott, F.; Hudson, Z.; Howey, R.; Chase, M. Topping Human viruses: Discovery and emergence. Philos. Trans. R.
Soc. B Biol. Sci. 2012, 367, 2864–2871. [CrossRef] [PubMed]

71. Hommi, Y.B.S.; Abdelaziz, M.S.; Ahmad, H.G. Effect of Occupational Cement Dust Pollution on The Respiratory Epithelium in
Amran Cement Factory. J. Sci. Technol. 2013, 15, 25–32. [CrossRef]

72. Kurda, R.; Silvestre, J.D.; De Brito, J. Toxicity and environmental and economic performance of fly ash and recycled concrete
aggregates use in concrete: A review. Heliyon 2018, 4, 1–45. [CrossRef] [PubMed]

73. Svedahl, S.; Svendsen, K.; Qvenild, T.; Sjaastad, A.K.; Hilt, B. Short term exposure to cooking fumes and pulmonary function. J.
Occup. Med. Toxicol. 2009, 4, 9–17. [CrossRef] [PubMed]

74. Yang, L.E.; Hoffmann, P.; Scheffran, J. Health impacts of smog pollution: The human dimensions of exposure. Lancet Planet.
Health 2017, 1, E132–E133. [CrossRef]

75. Bellisario, V.; Piccioni, P.; Bugiani, M.; Squillacioti, G.; Levra, S.; Gulotta, C.; Mengozzi, G.; Perboni, A.; Grignani, E.; Bono, R.
Tobacco Smoke Exposure, Urban and Environmental Factors as Respiratory Disease Predictors in Italian Adolescents. Int. J.
Environ. Res. Public Health 2019, 16, 4048. [CrossRef]

76. Niranjan, R.; Thakur, A.K. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on
Oxidative Stress and Inflammatory Pathways. Front. Immunol. 2017, 8, 1–20. [CrossRef]

77. Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143.
[CrossRef]

78. Riediker, M.; Zink, D.; Kreyling, W.; Oberdörster, G.; Elder, A.; Graham, U.; Lynch, I.; Duschl, A.; Ichihara, G.; Ichihara, S.; et al.
Particle toxicology and health—Where are we? Part. Fibre Toxicol. 2019, 16, 19–52. [CrossRef]

79. Abelsohn, A.; Stieb, D.M. Health effects of outdoor air pollution: Approach to counselling patients using the Air Quality Health
Index. Can. Fam. Physician 2011, 57, 881–887.

80. Peraica, M.; Radic, B.; Lucic, A.; Pavlovic, M. Toxic effects of mycotoxins in humans. Bull. World Health Organ. 1999, 77, 754–766.
[PubMed]

81. Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J.
Cancer Prev. 2015, 20, 232–240. [CrossRef] [PubMed]

82. Brocklehurst, P.; Ashley, J.; Tickle, M. Patient assessment in general dental practice—Risk assessment or clinical monitoring? Br.
Dent. J. 2011, 210, 351–354. [CrossRef] [PubMed]

83. Moraru, R.I.; Babut, G.B.; Cioca, L.I. Rationale and criteria development for risk assessment tool selection in work environments.
Environ. Eng. Manag. J. 2014, 13, 1371–1376. [CrossRef]
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