Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = aeruginosamide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1900 KiB  
Review
Structure, Toxicity, Prevalence, and Degradation of Six Understudied Freshwater Cyanopeptides
by Blake B. Stringer, Regina G. Szlag Silva, Jeremy J. Kodanko and Judy A. Westrick
Toxins 2025, 17(5), 233; https://doi.org/10.3390/toxins17050233 - 8 May 2025
Viewed by 1474
Abstract
Anthropogenic influences have increased global warming and eutrophication, escalating the frequency and severity of harmful cyanobacterial blooms (cHABs) in freshwater ecosystems. These blooms release cyanopeptides, a diverse class of bioactive compounds with varying acute and chronic toxicities upon ingestion. To date, research has [...] Read more.
Anthropogenic influences have increased global warming and eutrophication, escalating the frequency and severity of harmful cyanobacterial blooms (cHABs) in freshwater ecosystems. These blooms release cyanopeptides, a diverse class of bioactive compounds with varying acute and chronic toxicities upon ingestion. To date, research has prioritized acutely toxic cyanopeptides like microcystins. As a result, significantly less is known about other freshwater cyanopeptides. This review highlights six understudied cyanopeptide classes, anabaenopeptins, cyanopeptolins, aeruginosamides, aeruginosins, microginins, and cyclamides, and provides a comprehensive overview of their molecular structures, toxicological profiles, environmental concentrations, and known degradation pathways. Given the potential toxicity, increased environmental abundance, and environmental stability of many cyanopeptides in freshwater sources, further research is needed to understand if degraded cyanopeptides are still biologically active prior to entering drinking water to ensure public health. Full article
Show Figures

Graphical abstract

12 pages, 1244 KiB  
Article
Biological Activity and Stability of Aeruginosamides from Cyanobacteria
by Marta Cegłowska, Patrycja Kwiecień, Karolina Szubert, Paweł Brzuzan, Maciej Florczyk, Christine Edwards, Alicja Kosakowska and Hanna Mazur-Marzec
Mar. Drugs 2022, 20(2), 93; https://doi.org/10.3390/md20020093 - 21 Jan 2022
Cited by 4 | Viewed by 3853
Abstract
Aeruginosamides (AEGs) are classified as cyanobactins, ribosomally synthesized peptides with post-translational modifications. They have been identified in cyanobacteria of genera Microcystis, Oscillatoria, and Limnoraphis. In this work, the new data on the in vitro activities of three AEG variants, AEG [...] Read more.
Aeruginosamides (AEGs) are classified as cyanobactins, ribosomally synthesized peptides with post-translational modifications. They have been identified in cyanobacteria of genera Microcystis, Oscillatoria, and Limnoraphis. In this work, the new data on the in vitro activities of three AEG variants, AEG A, AEG625 and AEG657, and their interactions with metabolic enzymes are reported. Two aeruginosamides, AEG625 and AEG657, decreased the viability of human breast cancer cell line T47D, but neither of the peptides was active against human liver cancer cell line Huh7. AEGs also did not change the expression of MIR92b-3p, but for AEG625, the induction of oxidative stress was observed. In the presence of a liver S9 fraction containing microsomal and cytosolic enzymes, AEG625 and AEG657 showed high stability. In the same assays, quick removal of AEG A was recorded. The peptides had mild activity against three cytochrome P450 enzymes, CYP2C9, CYP2D6 and CYP3A4, but only at the highest concentration used in the study (60 µM). The properties of AEGs, i.e., cytotoxic activity and in vitro interactions with important metabolic enzymes, form a good basis for further studies on their pharmacological potential. Full article
(This article belongs to the Special Issue Pharmaceutical Potential of Marine Microorganisms)
Show Figures

Graphical abstract

23 pages, 4558 KiB  
Article
Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea)
by Renata Pilkaitytė, Donata Overlingė, Zita Rasuolė Gasiūnaitė and Hanna Mazur-Marzec
Water 2021, 13(13), 1760; https://doi.org/10.3390/w13131760 - 25 Jun 2021
Cited by 10 | Viewed by 3649
Abstract
This work aims to determine the profiles of cyanopeptides and anatoxin synthetized by cyanobacteria in the Lithuanian part of the Curonian Lagoon (SE Baltic Sea) and to characterize their spatial and temporal patterns in this ecosystem. Cyanometabolites were analysed by a LC-MS/MS system [...] Read more.
This work aims to determine the profiles of cyanopeptides and anatoxin synthetized by cyanobacteria in the Lithuanian part of the Curonian Lagoon (SE Baltic Sea) and to characterize their spatial and temporal patterns in this ecosystem. Cyanometabolites were analysed by a LC-MS/MS system and were coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer. During the investigation period (2013–2017), 10 microcystins, nodularin, anatoxin-a, 16 anabaenopeptins, including 1 oscillamide, 12 aeruginosins, 1 aeruginosamide, 3 cyanopeptolins and 4 microginins were detected. The most frequently detected metabolites were found at all investigated sites. Demethylated microcystin variants and anabaenopeptins had the strongest relationship with Planktothrix agardhii, while non-demethylated microcystin variants and anatoxin had the strongest relationship with Microcystis spp. Low concentrations of some microcystins: [Asp3]MC-RR, MC-RR, MC-LR, as well as a few other cyanopeptides: AP-A and AEG-A were found during the cold period (December–March). Over the study period, Aphanizomenon, Planktothrix and Microcystis were the main dominant cyanobacteria species, while Planktothrix, Microcystis, and Dolichospermum were potentially producers of cyanopeptides and anatoxin detected in samples from the Curonian Lagoon. Full article
(This article belongs to the Special Issue Plankton Ecology in Shallow Coastal Waters)
Show Figures

Figure 1

21 pages, 4995 KiB  
Article
Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece
by Sevasti-Kiriaki Zervou, Kimon Moschandreou, Aikaterina Paraskevopoulou, Christophoros Christophoridis, Elpida Grigoriadou, Triantafyllos Kaloudis, Theodoros M. Triantis, Vasiliki Tsiaoussi and Anastasia Hiskia
Toxins 2021, 13(6), 394; https://doi.org/10.3390/toxins13060394 - 1 Jun 2021
Cited by 24 | Viewed by 5055
Abstract
Cyanotoxins (CTs) produced by cyanobacteria in surface freshwater are a major threat for public health and aquatic ecosystems. Cyanobacteria can also produce a wide variety of other understudied bioactive metabolites such as oligopeptides microginins (MGs), aeruginosins (AERs), aeruginosamides (AEGs) and anabaenopeptins (APs). This [...] Read more.
Cyanotoxins (CTs) produced by cyanobacteria in surface freshwater are a major threat for public health and aquatic ecosystems. Cyanobacteria can also produce a wide variety of other understudied bioactive metabolites such as oligopeptides microginins (MGs), aeruginosins (AERs), aeruginosamides (AEGs) and anabaenopeptins (APs). This study reports on the co-occurrence of CTs and cyanopeptides (CPs) in Lake Vegoritis, Greece and presents their variant-specific profiles obtained during 3-years of monitoring (2018–2020). Fifteen CTs (cylindrospermopsin (CYN), anatoxin (ATX), nodularin (NOD), and 12 microcystins (MCs)) and ten CPs (3 APs, 4 MGs, 2 AERs and aeruginosamide (AEG A)) were targeted using an extended and validated LC-MS/MS protocol for the simultaneous determination of multi-class CTs and CPs. Results showed the presence of MCs (MC-LR, MC-RR, MC-YR, dmMC-LR, dmMC-RR, MC-HtyR, and MC-HilR) and CYN at concentrations of <1 μg/L, with MC-LR (79%) and CYN (71%) being the most frequently occurring. Anabaenopeptins B (AP B) and F (AP F) were detected in almost all samples and microginin T1 (MG T1) was the most abundant CP, reaching 47.0 μg/L. This is the first report of the co-occurrence of CTs and CPs in Lake Vegoritis, which is used for irrigation, fishing and recreational activities. The findings support the need for further investigations of the occurrence of CTs and the less studied cyanobacterial metabolites in lakes, to promote risk assessment with relevance to human exposure. Full article
Show Figures

Graphical abstract

13 pages, 2623 KiB  
Article
Eighteen New Aeruginosamide Variants Produced by the Baltic Cyanobacterium Limnoraphis CCNP1324
by Marta Cegłowska, Karolia Szubert, Ewa Wieczerzak, Alicja Kosakowska and Hanna Mazur-Marzec
Mar. Drugs 2020, 18(9), 446; https://doi.org/10.3390/md18090446 - 27 Aug 2020
Cited by 13 | Viewed by 3360
Abstract
Cyanobactins are a large family of ribosomally synthesized and post-translationally modified cyanopeptides (RiPPs). Thus far, over a hundred cyanobactins have been detected in different free-living and symbiotic cyanobacteria. The majority of these peptides have a cyclic structure. The occurrence of linear cyanobactins, aeruginosamides [...] Read more.
Cyanobactins are a large family of ribosomally synthesized and post-translationally modified cyanopeptides (RiPPs). Thus far, over a hundred cyanobactins have been detected in different free-living and symbiotic cyanobacteria. The majority of these peptides have a cyclic structure. The occurrence of linear cyanobactins, aeruginosamides and virenamide, has been reported sporadically and in few cyanobacterial taxa. In the current work, the production of cyanobactins by Limnoraphis sp. CCNP1324, isolated from the brackish water Baltic Sea, has been studied for the first time. In the strain, eighteen new aeruginosamide (AEG) variants have been detected. These compounds are characterized by the presence of prenyl and thiazole groups. A common element of AEGs produced by Limnoraphis sp. CCNP1324 is the sequence of the three C-terminal residues containing proline, pyrrolidine and methyl ester of thiazolidyne-4-carboxylic acid (Pro-Pyr-TzlCOOMe) or thiazolidyne-4-carboxylic acid (Pro-Pyr-TzlCOOH). The aeruginosamides with methylhomotyrosine (MeHTyr1) and with the unidentified N-terminal amino acids showed strong cytotoxic activity against human breast cancer cells (T47D). Full article
(This article belongs to the Special Issue Bioactive Molecules from Marine Microorganisms)
Show Figures

Figure 1

Back to TopTop