Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = aerobiomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 1519 KiB  
Review
Refined Wilding for Functional Biodiversity in Urban Landscapes: A Verification and Contextualisation
by Melissa Vogt
Urban Sci. 2025, 9(2), 21; https://doi.org/10.3390/urbansci9020021 - 21 Jan 2025
Cited by 2 | Viewed by 1231
Abstract
Optimising existing knowledge sets and encouraging the integration of interdisciplinary study findings can facilitate the advanced functions of biodiversity required for sustainable urban landscapes. Urban Green Spaces (UGS) can reach across an urban landscape, including indoor environments. The existing and traditional knowledge sets [...] Read more.
Optimising existing knowledge sets and encouraging the integration of interdisciplinary study findings can facilitate the advanced functions of biodiversity required for sustainable urban landscapes. Urban Green Spaces (UGS) can reach across an urban landscape, including indoor environments. The existing and traditional knowledge sets and practices for urban development and greening provide extensive and pertinent guidance; they are however variably implemented. More recent and advanced knowledge sets where properly utilised can optimise and provide advanced function. When adequately brought together, advanced sustainability for urban landscapes can significantly improve global sustainability performance. This article uses the final step of classic grounded theory to contextualise, verify and define refined wilding as a substantiating concept for functional biodiversity as theory for urban landscapes and for sustainable urban development. Refined wilding works toward wild refined UGS that functionally connect across an urban space and landscape, including positive influential flows with grey and transparent spaces. Where used to guide urban design, strategies, vision and goals this concept can provide (i) a conceptual framing that optimises and encourages an organisation of interdisciplinary and advanced knowledge, improving and advancing sustainable urban development, and (ii) a specificity, and overarching and comprehensive guidance for various UGS types toward the positive outcome of functional biodiversity. Functionally biodiverse UGS and landscapes require lower maintenance and perform at an advanced level for human health, economic development, the natural environment, and built or paved environments and landscapes. In turn, addressing how human activity and modification of urban landscapes can significantly degrade human health and the natural environment, or underachieve. Refined wilding (i) substantiates functional biodiversity as a positive outcome for urban landscapes, with a balance between ecological functions and functions for human populations; (ii) considers quality, function, and connectivity of and between UGS and spaces where UGS could be introduced or improved; (iii) enables an improvement, and addresses common barriers to UGS accomplishing advanced functions for urban sustainability; (iv) encourages urban wilding by functional native and non-native selections, and natural and semi-natural UGS; (v) positively influences and is influenced by grey (built environment) and transparent spaces (blue/aquatic and air). Full article
Show Figures

Figure 1

18 pages, 4581 KiB  
Article
Seasonal Characterization of the Aerobiome in Hematopoietic Stem Cell Transplant Rooms: Potential Risk for Immunosuppressed Patients
by Emilio Mariano Durán-Manuel, Edgar Fiscal-Baxin, Andres Emmanuel Nolasco-Rojas, Miguel Ángel Loyola-Cruz, Clemente Cruz-Cruz, Marianela Paredes-Mendoza, Adolfo López-Ornelas, Dulce Milagros Razo Blanco-Hernández, Nayeli Goreti Nieto-Velázquez, Aída Verónica Rodríguez-Tovar, Adrián Ramírez-Granillo, Enzo Vásquez-Jiménez, Verónica Fernández-Sánchez, Erika Gómez-Zamora, Mónica Alethia Cureño-Díaz, Andrea Milán-Salvatierra, Carlos Alberto Jiménez-Zamarripa, Claudia Camelia Calzada-Mendoza and Juan Manuel Bello-López
Microorganisms 2024, 12(11), 2352; https://doi.org/10.3390/microorganisms12112352 - 18 Nov 2024
Cited by 1 | Viewed by 1456
Abstract
Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants due to their immunosuppression, making them susceptible to opportunistic infections. Therefore, understanding the composition of the aerobiome in this area is vital. The aim of this study was to characterize the [...] Read more.
Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants due to their immunosuppression, making them susceptible to opportunistic infections. Therefore, understanding the composition of the aerobiome in this area is vital. The aim of this study was to characterize the aerobiome in an HSC transplant area, evaluating the impact of infrastructure and health personnel operations on air contamination. The environmental parameters and aerobiome of the HSC transplant area at Hospital Juárez de México were quantified over one year. Finally, a double-entry Vester matrix was constructed to classify problems according to their degree of causality. The abundance and taxonomic diversity of the aerobiome were dependent on seasonality, environmental factors, and high-efficiency filtration. Gram-positive bacteria predominated, followed by fungi and Gram-negative bacteria. ANOVA revealed significant differences in the bacterial aerobiome but not in the fungal aerobiome among the transplant rooms. Clinically, fungi such as Aspergillus fumigatus, Alternaria spp., Cladosporium spp., and Penicillium spp. were identified. ESKAPE bacteria typing revealed clonal dispersion. Finally, the Vester matrix highlighted critical problems associated with contamination due to the absence of HEPA filtration and non-adherence in patient management practices. HEPA filtration and positive pressure are essential to improve the air quality and reduce the microbiological load. However, the control areas will depend on patient management and routine activities, such as entry protocols in controlled areas. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

14 pages, 5178 KiB  
Article
The Impact of Environmental Gaseous Pollutants on the Cultivable Bacterial and Fungal Communities of the Aerobiome
by Madelaine Mejías, Romina Madrid, Karina Díaz, Ignacio Gutiérrez-Cortés, Rodrigo Pulgar and Dinka Mandakovic
Microorganisms 2024, 12(6), 1103; https://doi.org/10.3390/microorganisms12061103 - 29 May 2024
Viewed by 1589
Abstract
Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor [...] Read more.
Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor from other contaminants or environmental factors. In this study, we aimed to experimentally assess the influence of contrasting concentrations of atmospheric gaseous pollutants as isolated variables on the composition of the aerobiome. Our study sites were contrasting Air Quality Index (AQI) sites of the Metropolitan Region of Chile, where nitric oxide (NO) was significantly lower at the low-AQI site than at the high-AQI site, while ozone (O3) was significantly higher. Cultivable aerobiome communities from the low-AQI site were exposed to their own pollutants or those from the high-AQI site and characterized using high-throughput sequencing (HTS), which allowed comparisons between the entire cultivable communities. The results showed increased alpha diversity in bacterial and fungal communities exposed to the high-AQI site compared to the low-AQI site. Beta diversity and compositional hierarchical clustering analyses revealed a clear separation based on NO and O3 concentrations. At the phylum level, four bacterial and three fungal phyla were identified, revealing an over-representation of Actinobacteriota and Basidiomycota in the samples transferred to the high-AQI site, while Proteobacteria were more abundant in the community maintained at the low-AQI site. At the functional level, bacterial imputed functions were over-represented only in samples maintained at the low-AQI site, while fungal functions were affected in both conditions. Overall, our results highlight the impact of NO and/or O3 on both taxonomic and functional compositions of the cultivable aerobiome. This study provides, for the first time, insights into the influence of contrasting pollutant gases on entire bacterial and fungal cultivable communities through a controlled environmental intervention. Full article
(This article belongs to the Special Issue Microbiome Research for Animal, Plant and Environmental Health)
Show Figures

Figure 1

11 pages, 7911 KiB  
Article
Establishment of a Halophilic Bloom in a Sterile and Isolated Hypersaline Mesocosm
by Matthew E. Rhodes, Allyson D. Pace, Menny M. Benjamin, Heather Ghent and Katherine S. Dawson
Microorganisms 2023, 11(12), 2886; https://doi.org/10.3390/microorganisms11122886 - 29 Nov 2023
Cited by 1 | Viewed by 2241
Abstract
Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly [...] Read more.
Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly colonizing an isolated and sterile hypersaline pool and the order of succession of the ensuing colonizers. A sterile and isolated 1 m3 hypersaline mesocosm pool was constructed on a rooftop in Charleston, SC. Within months, numerous halophilic lineages successfully navigated the 20 m elevation and the greater than 1 km distance from the ocean shore, and a vibrant halophilic community was established. All told, in a nine-month period, greater than a dozen halophilic genera colonized the pool. The first to arrive were members of the Haloarchaeal genus Haloarcula. Like a weed, the Haloarcula rapidly colonized and dominated the mesocosm community but were later supplanted by other hyperhalophilic genera. As a possible source of long-distance inoculum, both aerosol and water column samples were obtained from the Great Salt Lake and its immediate vicinity. Members of the same genus, Haloarcula, were preferentially enriched in the aerosol sample relative to the water column samples. Therefore, it appears that a diverse array of hyperhalophiles are capable of surviving aeolian long-distance transport and that some lineages, in particular, have possibly adapted to that strategy. Full article
Show Figures

Figure 1

12 pages, 1683 KiB  
Article
Long-Term Monitoring of Bioaerosols in an Environment without UV and Desiccation Stress, an Example from the Cave Postojnska Jama, Slovenia
by Janez Mulec, Sara Skok, Rok Tomazin, Jasmina Letić, Tadej Pliberšek, Sanja Stopinšek and Saša Simčič
Microorganisms 2023, 11(3), 809; https://doi.org/10.3390/microorganisms11030809 - 22 Mar 2023
Cited by 6 | Viewed by 2483
Abstract
A natural cave environment subject to regular human visitation was selected for aerobiological study to minimize the effects of severe temperature fluctuations, UV radiation, and desiccation stress on the aerobiome. The longer sampling period of bioaerosols, up to 22 months, was generally not [...] Read more.
A natural cave environment subject to regular human visitation was selected for aerobiological study to minimize the effects of severe temperature fluctuations, UV radiation, and desiccation stress on the aerobiome. The longer sampling period of bioaerosols, up to 22 months, was generally not associated with a proportionally incremental and cumulative increase of microbial biomass. The culture-independent biomass indicator ATP enabled quick and reliable determination of the total microbial biomass. Total airborne microbial biomass was influenced by human visitation to the cave, as confirmed by significantly higher concentrations being observed along tourist footpaths (p < 0.05). Airborne beta-glucans (BG) and lipopolysaccharide (LPS) are present in cave air, but their impact on the cave remains to be evaluated. Staphylococcus spp., as an indicator of human presence, was detected at all sites studied. Their long-term survival decrease is likely due to high relative humidity, low temperature, the material to which they adhere, and potentially natural elevated radon concentration. The most commonly recorded species were: S. saprophyticus, which was identified in 52% of the studied sites, S. equorum in 29%, and S. warneri in 24% of the studied sites. Only a few isolates were assigned to Risk group 2: S. aureus, S. epidermidis, S. haemolyticus, S. pasteuri, and S. saprophyticus. Full article
(This article belongs to the Collection Microbial Life in Extreme Environments)
Show Figures

Figure 1

18 pages, 999 KiB  
Review
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence
by Elena Franchitti, Chiara Caredda, Elisa Anedda and Deborah Traversi
Atmosphere 2022, 13(7), 1148; https://doi.org/10.3390/atmos13071148 - 20 Jul 2022
Cited by 12 | Viewed by 4031
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome [...] Read more.
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes. Full article
Show Figures

Graphical abstract

14 pages, 2059 KiB  
Article
The Response of Airborne Mycobiome to Dust Storms in the Eastern Mediterranean
by Xuefeng Peng, Daniela Gat, Adina Paytan and Yinon Rudich
J. Fungi 2021, 7(10), 802; https://doi.org/10.3390/jof7100802 - 25 Sep 2021
Cited by 10 | Viewed by 3113
Abstract
Airborne microbial communities directly impact the health of humans, animals, plants, and receiving ecosystems. While airborne bacterial and fungal communities have been studied by both cultivation-based methods and metabarcoding surveys targeting specific molecular markers, fewer studies have used shotgun metagenomics to study the [...] Read more.
Airborne microbial communities directly impact the health of humans, animals, plants, and receiving ecosystems. While airborne bacterial and fungal communities have been studied by both cultivation-based methods and metabarcoding surveys targeting specific molecular markers, fewer studies have used shotgun metagenomics to study the airborne mycobiome. We analyzed the diversity and relative abundance of fungi in nine airborne metagenomes collected on clear days (“background”) and during dust storms in the Eastern Mediterranean. The negative correlation between the relative abundance of fungal reads and the concentrations of atmospheric particulate matter having an aerodynamic diameter smaller than 10 μm (PM10) indicate that dust storms lower the proportion of fungi in the airborne microbiome, possibly due to the lower relative abundance of fungi in the dust storm source regions and/or more effective transport of bacteria by the dust. Airborne fungal community composition was altered by the dust storms, particularly those originated from Syria, which was enriched with xerophilic fungi. We reconstructed a high-quality fungal metagenome-assembled genome (MAG) from the order Cladosporiales, which include fungi known to adapt to environmental extremes commonly faced by airborne microbes. The negative correlation between the relative abundance of Cladosporiales MAG and PM10 concentrations indicate that its origin is dominated by local sources and likely includes the indoor environments found in the city. Full article
(This article belongs to the Special Issue Diversity and Classification of Environmental Fungi)
Show Figures

Figure 1

Back to TopTop