Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = adversarial patrolling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2975 KB  
Article
ARGUS: An Autonomous Robotic Guard System for Uncovering Security Threats in Cyber-Physical Environments
by Edi Marian Timofte, Mihai Dimian, Alin Dan Potorac, Doru Balan, Daniel-Florin Hrițcan, Marcel Pușcașu and Ovidiu Chiraș
J. Cybersecur. Priv. 2025, 5(4), 78; https://doi.org/10.3390/jcp5040078 - 1 Oct 2025
Viewed by 1114
Abstract
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed [...] Read more.
Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed to close this gap by correlating cyber and physical anomalies in real time. ARGUS integrates computer vision for facial and weapon detection with intrusion detection systems (Snort, Suricata) for monitoring malicious network activity. Operating through an edge-first microservice architecture, it ensures low latency and resilience without reliance on cloud services. Our evaluation covered five scenarios—access control, unauthorized entry, weapon detection, port scanning, and denial-of-service attacks—with each repeated ten times under varied conditions such as low light, occlusion, and crowding. Results show face recognition accuracy of 92.7% (500 samples), weapon detection accuracy of 89.3% (450 samples), and intrusion detection latency below one second, with minimal false positives. Audio analysis of high-risk sounds further enhanced situational awareness. Beyond performance, ARGUS addresses GDPR and ISO 27001 compliance and anticipates adversarial robustness. By unifying cyber and physical detection, ARGUS advances beyond state-of-the-art patrol robots, delivering comprehensive situational awareness and a practical path toward resilient, ethical robotic security. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

10 pages, 1207 KB  
Proceeding Paper
Generalized Net Model for Analysis of Behavior and Efficiency of Intelligent Virtual Agents in Risky Environment
by Dilyana Budakova, Velyo Vasilev and Lyudmil Dakovski
Eng. Proc. 2025, 100(1), 56; https://doi.org/10.3390/engproc2025100056 - 17 Jul 2025
Viewed by 277
Abstract
In this article, two generalized net models (GNMs) are proposed to study the behavior and effectiveness of intelligent virtual agents (IVA) working in a risky environment under different scenarios and training algorithms. The proposed GNMs allow for the selection of machine learning algorithms [...] Read more.
In this article, two generalized net models (GNMs) are proposed to study the behavior and effectiveness of intelligent virtual agents (IVA) working in a risky environment under different scenarios and training algorithms. The proposed GNMs allow for the selection of machine learning algorithms such as intensity of characteristics Q-learning (InCh-Q), as well as the modification of multi-plan reinforcement learning (RL), proximal policy optimization (PPO), soft actor–critic (SAC), the generative adversarial imitation learning (GAIL) algorithm, and behavioral cloning (CB). The choice of action, the change in priorities, and the achievement of goals by the IVA are studied under different scenarios, such as fire extinguishing, rescue operations, evacuation, patrolling, and training. Transitions in the GNMs represent the scenarios and learning algorithms. The tokens that pass through the GNMs can be the GNMs of the IVA architecture or the IVA memory model, which are enriched with knowledge and experience during the experiments, as the scenarios develop. The proposed GNMs are formally correct and, at the same time, understandable, practically applicable, and convenient for interpretation. Achieving GNMs that meet these requirements is a complex problem. Therefore, issues related to the design and use of GNMs for the reliable modeling and analysis of the behavior and effectiveness of IVAs operating in a dynamic and risky environment are discussed. Some advantages and challenges in using GNMs compared to other classical models used to study IVA behavior are considered. Full article
Show Figures

Figure 1

21 pages, 12868 KB  
Article
Opponent-Aware Planning with Admissible Privacy Preserving for UGV Security Patrol under Contested Environment
by Junren Luo, Wanpeng Zhang, Wei Gao, Zhiyong Liao, Xiang Ji and Xueqiang Gu
Electronics 2020, 9(1), 5; https://doi.org/10.3390/electronics9010005 - 18 Dec 2019
Cited by 2 | Viewed by 2797
Abstract
Unmanned ground vehicles (UGVs) have been widely used in security patrol. The existence of two potential opponents, the malicious teammate (cooperative) and the hostile observer (adversarial), highlights the importance of privacy-preserving planning under contested environments. In a cooperative setting, the disclosure of private [...] Read more.
Unmanned ground vehicles (UGVs) have been widely used in security patrol. The existence of two potential opponents, the malicious teammate (cooperative) and the hostile observer (adversarial), highlights the importance of privacy-preserving planning under contested environments. In a cooperative setting, the disclosure of private information can be restricted to the malicious teammates. In adversarial setting, obfuscation can be added to control the observability of the adversarial observer. In this paper, we attempt to generate opponent-aware privacy-preserving plans, mainly focusing on two questions: what is opponent-aware privacy-preserving planning, and, how can we generate opponent-aware privacy-preserving plans? We first define the opponent-aware privacy-preserving planning problem, where the generated plans preserve admissible privacy. Then, we demonstrate how to generate opponent-aware privacy-preserving plans. The search-based planning algorithms were restricted to public information shared among the cooperators. The observation of the adversarial observer could be purposefully controlled by exploiting decoy goals and diverse paths. Finally, we model the security patrol problem, where the UGV restricts information sharing and attempts to obfuscate the goal. The simulation experiments with privacy leakage analysis and an indoor robot demonstration show the applicability of our proposed approaches. Full article
(This article belongs to the Special Issue AI-Enabled Security and Privacy Mechanisms for IoT)
Show Figures

Figure 1

17 pages, 4782 KB  
Article
Novel Bioinspired Approach Based on Chaotic Dynamics for Robot Patrolling Missions with Adversaries
by Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu and Christian-Daniel Curiac
Entropy 2018, 20(5), 378; https://doi.org/10.3390/e20050378 - 18 May 2018
Cited by 24 | Viewed by 5138
Abstract
Living organisms have developed and optimized ingenious defense strategies based on positional entropy. One of the most significant examples in this respect is known as protean behavior, where a prey animal under threat performs unpredictable zig-zag movements in order to confuse, delay or [...] Read more.
Living organisms have developed and optimized ingenious defense strategies based on positional entropy. One of the most significant examples in this respect is known as protean behavior, where a prey animal under threat performs unpredictable zig-zag movements in order to confuse, delay or escape the predator. This kind of defensive behavior can inspire efficient strategies for patrolling robots evolving in the presence of adversaries. The main goal of our proposed bioinspired method is to implement the protean behavior by altering the reference path of the robot with sudden and erratic direction changes without endangering the robot’s overall mission. By this, a foe intending to target and destroy the mobile robot from a distance has less time for acquiring and retaining the proper sight alignment. The method uses the chaotic dynamics of the 2D Arnold’s cat map as a primary source of positional entropy and transfers this feature to every reference path segment using the kinematic relative motion concept. The effectiveness of this novel biologically inspired method is validated through extensive and realistic simulation case studies. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

27 pages, 1406 KB  
Article
Keeping Pace with Criminals: An Extended Study of Designing Patrol Allocation against Adaptive Opportunistic Criminals
by Chao Zhang, Shahrzad Gholami, Debarun Kar, Arunesh Sinha, Manish Jain, Ripple Goyal and Milind Tambe
Games 2016, 7(3), 15; https://doi.org/10.3390/g7030015 - 27 Jun 2016
Cited by 15 | Viewed by 10064
Abstract
Game theoretic approaches have recently been used to model the deterrence effect of patrol officers’ assignments on opportunistic crimes in urban areas. One major challenge in this domain is modeling the behavior of opportunistic criminals. Compared to strategic attackers (such as terrorists) who [...] Read more.
Game theoretic approaches have recently been used to model the deterrence effect of patrol officers’ assignments on opportunistic crimes in urban areas. One major challenge in this domain is modeling the behavior of opportunistic criminals. Compared to strategic attackers (such as terrorists) who execute a well-laid out plan, opportunistic criminals are less strategic in planning attacks and more flexible in executing well-laid plans based on their knowledge of patrol officers’ assignments. In this paper, we aim to design an optimal police patrolling strategy against opportunistic criminals in urban areas. Our approach is comprised by two major parts: learning a model of the opportunistic criminal (and how he or she responds to patrols) and then planning optimal patrols against this learned model. The planning part, by using information about how criminals responds to patrols, takes into account the strategic game interaction between the police and criminals. In more detail, first, we propose two categories of models for modeling opportunistic crimes. The first category of models learns the relationship between defender strategy and crime distribution as a Markov chain. The second category of models represents the interaction of criminals and patrol officers as a Dynamic Bayesian Network (DBN) with the number of criminals as the unobserved hidden states. To this end, we: (i) apply standard algorithms, such as Expectation Maximization (EM), to learn the parameters of the DBN; (ii) modify the DBN representation that allows for a compact representation of the model, resulting in better learning accuracy and the increased speed of learning of the EM algorithm when used for the modified DBN. These modifications exploit the structure of the problem and use independence assumptions to factorize the large joint probability distributions. Next, we propose an iterative learning and planning mechanism that periodically updates the adversary model. We demonstrate the efficiency of our learning algorithms by applying them to a real dataset of criminal activity obtained from the police department of the University of Southern California (USC) situated in Los Angeles, CA, USA. We project a significant reduction in crime rate using our planning strategy as compared to the actual strategy deployed by the police department. We also demonstrate the improvement in crime prevention in simulation when we use our iterative planning and learning mechanism when compared to just learning once and planning. Finally, we introduce a web-based software for recommending patrol strategies, which is currently deployed at USC. In the near future, our learning and planning algorithm is planned to be integrated with this software. This work was done in collaboration with the police department of USC. Full article
(This article belongs to the Special Issue Real World Applications of Game Theory)
Show Figures

Figure 1

Back to TopTop