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Abstract: Unmanned ground vehicles (UGVs) have been widely used in security patrol.
The existence of two potential opponents, the malicious teammate (cooperative) and the hostile
observer (adversarial), highlights the importance of privacy-preserving planning under contested
environments. In a cooperative setting, the disclosure of private information can be restricted to the
malicious teammates. In adversarial setting, obfuscation can be added to control the observability of
the adversarial observer. In this paper, we attempt to generate opponent-aware privacy-preserving
plans, mainly focusing on two questions: what is opponent-aware privacy-preserving planning,
and, how can we generate opponent-aware privacy-preserving plans? We first define the
opponent-aware privacy-preserving planning problem, where the generated plans preserve
admissible privacy. Then, we demonstrate how to generate opponent-aware privacy-preserving
plans. The search-based planning algorithms were restricted to public information shared among
the cooperators. The observation of the adversarial observer could be purposefully controlled by
exploiting decoy goals and diverse paths. Finally, we model the security patrol problem, where the
UGV restricts information sharing and attempts to obfuscate the goal. The simulation experiments
with privacy leakage analysis and an indoor robot demonstration show the applicability of our
proposed approaches.

Keywords: UGV; privacy-preserving planning; information leakage; security patrol

1. Introduction

With the development of intelligent unmanned system technology, unmanned ground vehicles
(UGVs) have become extremely rugged for the harshest military use, such as executing monitoring tasks
in harsh and complex urban environments [1]. As our world becomes increasingly well-connected,
there is an increased need to enable UGVs to cooperate in generating plans for security patrol. For
example, the iRobot’s PackBot, which has played a critical role in providing situational awareness for
anti-terrorist operations [2].

Several approaches have been proposed in recent years to address the conundrum of privacy
preservation through controlling privacy leakage for different requirements under contested
environments. One of them is differential privacy [3], which adds appropriate noise to the transmission
state in order to limit the opponent to acquiring only the true state of the transmitted signal at
a predetermined level of accuracy. Another approach uses cryptography for secure multi-party
computation (MPC). In [4,5], the authors encrypt the messages with a public-key homomorphic
cryptosystem and apply techniques (e.g., random masking and random permutation) to protect the
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agents’ privacy. So, the encrypted messages can be exchanged among the agents in various ways [6].
A third approach tries to guarantee privacy as a loss of observability [7,8], but it is difficult to achieve
strong privacy of this form. All these mainly focus on the privacy leakage from the information
perspective, while decision-related privacy preservation (e.g., privacy-preserving planning) has mostly
been neglected.

Several recent pieces of research on privacy-preserving planning for multi-agent systems have
captured the attention of the planning community [9–11]. Privacy-preserving plans represent plans
that do not actively disclose sensitive private information. In fact, privacy preservation is the goal
pursued by multi-agent planning, which has been a crucial concern for multi-agent systems in some
contexts, such as agent negotiation [12], multi-agent reinforcement learning and policy iteration [4,5],
deep learning [13], and distributed constraint optimization problems (DCOPs) [14–16]. Multi-agent
planning (MAP) in cooperative environments aims at generating a sequence of actions to fulfill some
specified goals [17]. Most multi-agent systems rely intrinsically on collaboration among agents to
accomplish a joint task, in which the collaboration depends on the exchange of information among
them, so the privacy preservation of the information naturally rises.

Security patrol has been widely studied among the defense and security fields in the past decade.
Unmanned ground vehicle patrols have gained increased interest in recent decades mainly due to
their relevance to various security applications [18]. The common mode of urban security patrol is to
patrol checkpoints. As illustrated in Figure 1, the UGVs perform security patrol, one supply center,
and some determined checkpoints are distributed across the security patrol environment. The UGVs
are required to repeatedly visit some checkpoints to monitor the local area, but the UGVs do not share
information about the task plan with the supply center. We assume that the adversary can exploit any
predictable behavior of the UGVs, which means the adversary has full knowledge of the patrolling
task. Since the opponent is collecting information, the objective of privacy-preserving planning is to
protect private information in different situations.
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Figure 1. Typical urban security patrol scenario with some checkpoints on a simplified road network.
The UGVs should patrol two zones, each with four candidate checkpoints, and the supply center will
provide support for the UGVs.

Regarding urban security patrol, some checkpoints located around the urban trunk road are high
risk. Thus, it is feasible to deploy UGVs to patrol such checkpoints regularly and collect information
(e.g., images, video, etc.). Although UGVs have become quite ubiquitous in patrols with logging
and tracking capabilities, they are mostly at risk. The hostile observer will constantly monitor the
task execution and get access to the UGVs’ data and actions. The challenge of privacy preservation
arises because all aspects of information are private and the UGVs are not eager to share, which drives
us to compute privacy-preserving plans that can protect privacy when executed in cooperative and
adversarial environments.
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In this paper, we address the problem of opponent-aware privacy-preserving planning for security
patrol and attempt to answer the following questions: what is opponent-aware privacy-preserving
planning, and how can we generate opponent-aware privacy-preserving plans? Our contribution
lies in the opponent-aware privacy-preserving planning architecture. In a cooperative setting,
the search-based planning method could be restricted to obtain the public information shared
by the cooperative agents. Whereas, in an adversarial setting, the observation of the adversary
could be purposefully controlled by exploiting decoy goals and diverse paths. Finally, simulation
experiments with privacy leakage analysis and indoor robot demonstration show the applicability of
our proposed approaches.

The rest of this paper is organized as follows. In Section 2, some related works about
privacy, security, and metrics are presented. In Section 3, we decompose the opponent-aware
privacy-preserving planning problem into two subproblems from different perspectives. In Section 4,
experimental evaluations of plan generation and information leakage analysis were conducted.
In Section 5, we conclude this paper and point out further directions.

2. Background and Related Work

2.1. Privacy and Security Assumption

Privacy and Security: Many privacy models have been adopted in multi-agent planning according
to three different criteria: the information model (imposed privacy [19], induced privacy [20]),
the information-sharing scheme (MA-STRIPS [19], subset privacy [21]), and practical privacy
guarantees (no privacy [22], weak privacy [23], object cardinality privacy [24], and strong privacy [9]).
Privacy can be divided into different categories, such as agent privacy, model privacy, decision privacy,
topology privacy, and constraint privacy [4,14]. Here we introduce some widely used types of privacy.

Definition 1 (Agent privacy). No agent should be able to recognize the identity or existence of another agent.

Agent privacy can be achieved by employing anonymous or coded names. Such as one agent
would not want the opponents to know the identity or existence.

Definition 2 (Model privacy). No agent should be able to recognize the model of another agent, including
environmental and algorithmic models which are related to states, actions, observations, transition probability,
and rewards.

Model privacy is the key issue in adversarial environments; one agent will not get more
information about others except for what has been revealed.

Planning algorithms for privacy preserving can be divided into weak or strong privacy [17],
ε-strong privacy [25], and provable guarantees privacy [26].

Definition 3 (Weak privacy preserving). The agent will not disclose private information of the states, private
actions, and private parts of the public actions during the whole run of the algorithm.

In other words, the agent will share only the information in the public part. Even if not
communicated, the adversary will deduce the existence and values of private variables, preconditions,
and effects from the (public) information communicated.

Definition 4 (Strong privacy preserving). The adversary can deduce no information about the private
variables, preconditions, or effect of the actions, beyond the shared public projection of actions and plans.

Privacy essentially concerns a semi-honest adversary who is interested in learning the information.
Privacy is equivalent to the concept of unobservability among the control community, and it is closely
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related to the concept of semantic security from cryptography [27], where secure plans build on the
concept of independent inputs [28]. A secure plan is always private, which imposes an additional
constraint (all possible goals must result in to the same observations) to the privacy problem [29].

Security Assumption: In [30], the authors define the notion of privacy-preserving planning
based on secure MPC and provide some proper analysis of privacy leakage in multi-agent planning.
Many assumptions specify the properties of the agent, environment, and algorithm in some secure
multi-party computation literature [10,28,31].

Assumption 1 (Adversary model). An honest but curious adversary who is passive and follows the algorithm
and the protocol correctly but may glean information from the execution and communicated data to learn about
the privacy. A malicious adversary, who can actively deviate from the protocol specification.

Assumption 2 (Algorithm known). The adversary has access to the algorithm and knows how the algorithm
works. The agent should not rely on the privacy of the algorithmic mechanism itself.

Assumption 3 (Input independent). The adversary can rerun the algorithm by setting different goals as real
goals to check the variability of the output.

Assumption 4 (FIFO). When the actor takes action to reach a corresponding state, only then does the adversary
receive the corresponding observation in the order which was emitted by the plan execution.

As is usually done by cryptography, these assumptions do not take the adversary’s recognition
model into consideration, which is quite different from the artificial intelligence (AI) community.

2.2. Privacy-Preserving Planning

The planning problem of privacy preserving can be modeled as a multi-agent planning (MAP)
problem with a privacy-preserving requirement. MAP comes in different types, such as deterministic
MAP (DMAP) [19,32], interactive partially observable Markov decision processes (I-POMDPs) [33],
and decentralized POMDPs (Dec-POMDPs) [34]. Regarding privacy, there are many synonymous
concepts in the recent literature, which all aim at generating obfuscated behavior, such as deception,
security, and obfuscation, as shown in Table 1. A secure plan is always private; a deceptive plan
is always obfuscating, but may or may not be dissimulating [29]. A simple illustration of different
strategies is shown in Figure 2.

Table 1. Some synonymous concepts of privacy.

Concepts Main Contributions

Obfuscation k-ambiguous and d-diverse [35]
one candidate goal [36]
secure MAFS [9]

Privacy privacy leakage [10]
plan set intersection [11]
privacy-preserving policy iteration [4]

Security equidistant states [28]
last deceptive point [37,38]
deceptive shortest path [39]
equidistant states [28]

Deception bounded deception [40]
hide intention [41]
λ Deception [42]
deceptive adversary [43]
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Figure 2. Deception Strategies: (a) Simulation with the UGV hiding the true goals and going to either
of the five goals. (b) Dissimulation with the UGV showing false goals; the probability of decoy goals
are higher than the true goal. Obfuscation strategies: (c) Privacy with the UGV going to either of the
five goals; the resulting plans could be deceptive. (d) Security with the UGV could go to either of the
three goals under rational assumption.

In a cooperative environment, many multi-agent planners have been proposed to address
privacy-preserving planning problems, such as MAFS (multi-agent forward search) [30], MADLA
(multi-agent distributed and local asynchronous) [44], and PSM (planning state machine) [11]. In [11],
the author proposed one secure planner for multi-agent planning, but this planner is impractical to
compute all possible solutions. In [9], the authors introduce a modified version of the multi-agent
forward search algorithm, Secure-MAFS [30], which is implemented based on an equivalent macro
sending technique [24]. Some privacy guarantee planning algorithms have been provided in [9],
but they are restricted to very special cases.

In an adversarial environment, the adversary implicitly uses the signal behavioral cues of the
actors during the plan execution, and perform diagnosis on the internal information based on the
resulting observations. Recently, there has been some interest in exploring privacy preservation [36],
goal obfuscation [28,35], deception [37,38], intention hiding [41], etc. In [35], Kulkarni et al. attempted
to make plans with k-ambiguous goals, but they were not guaranteed to be secure. In [36], Keren et al.
proposed to preserve privacy by keeping their goal ambiguous for as long as possible, but there
was only one candidate goal and one partially obfuscated plan. In [38], Masters et al. applied some
deceptive strategies for path planning, but these do not support deception when the adversary knows
the explicit model. In [28], Kulkarni et al. proposed to securely obfuscate the real goal by making all
candidate goals equally likely for as long as possible, but the heuristic deployed makes the planner
incomplete. All these studies employ goal or plan recognition modules.

2.3. Information Leakage Metric

Although the key motivation for privacy-preserving planning is preserving privacy, some private
information will be leaked during the planning, which means it is impossible to achieve complete
privacy. If one malicious teammate directly receives any of the private information, or can indirectly
deduce the privacy from the communicated public information, the privacy information will be leaked.
To evaluate the privacy leakage, we consider the foundations of quantitative information flow [45].
The leakage of the private information is based on the uncertainty of the adversary about the input.
Here we use the min-entropy (an instance of Rényi entropy [46]) as a better measure of the privacy
information leakage (PIL):

PIL = H∞(H)− H∞(H|L), (1)

where the initial uncertainty is H∞(H), the residual uncertainty is H∞(H|L).
Using the uniform distribution case, we denote the number of states as tprio and tpost, then the

remaining uncertainty gives a security guarantee. The expected probability that the adversary could



Electronics 2020, 9, 5 6 of 21

guess H given L decreases exponentially with H∞(H|L): 2−H∞(H|L) = 2− log tpost = 1/tpost, and we can
obtain the privacy information leakage:

PIL = log t prio − log t post = log
t prio

t post
. (2)

3. Methodology

3.1. Opponent-Aware Privacy-Preserving Planning

In privacy-preserving planning (PPP), it is important to acknowledge that two potential opponents
are involved: the malicious teammate (cooperator) and the hostile observer (adversary). PPP should
produce plans that reveal neither the goal nor the activities of the agents, but many planners
cannot have completeness, strong privacy preserving, and efficiency together. So, it is practical for
them to achieve opponent-aware privacy preservation within bounded privacy information leakage.
As illustrated in Figure 3, privacy leakage will occur at the information layer and decision-making layer.
At the information layer, differential privacy and homomorphic encryption are applicable techniques
to protect private information.

Information Layer
Differential Privacy

Information Privacy Preserving

Information Sharing Restricted Task Planning

Homomorphic Encryption

Adversarial

Cooperative

Decision-Making Layer

Surveillance, Search, and Rescue 

Observability Controlled Path Planning

Urban, Border, and Battlefield Security PatrolApplication Layer

Figure 3. Privacy-preserving methods for decision-making layer and information layer, and the
application layer for some application areas.

In this paper, we mainly focus on the middle layer for decision-making. For task planning in
cooperative environments, we need to restrict the information sharing to malicious teammates, and for
the path planning in adversarial environments, we need to control the observability of the adversary.
Here, we define the opponent-aware privacy-preserving planning problem as follows:

Definition 5 (Opponent-aware privacy-preserving planning). We define opponent-aware
privacy-preserving planning as a multi-agent planning problem of protecting privacy secure to certain
extent considering two opponents.

As a result, the generated plans protect privacy from two potential opponents: the malicious
teammate and the hostile observer. In a cooperative setting, to cope with malicious teammates,
we should restrict the disclosure of private information to malicious teammates. In adversarial
settings, real combat scenarios often consist of hostile opponents, so we will add obfuscation to control
the observability of the opponents.

3.2. Information Sharing Restricted Task Planning

In cooperative environments, the agents are cooperative in concurrently planning and executing
their local plans to achieve a joint goal. We could model all other agents as a single adversary, who
can collect the information to infer more. Information sharing restricted task planning with privacy
preservation can be defined as follows [10]:
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Definition 6 (Information sharing restricted task planning). For a set of agentsN , the information sharing
restricted task planning problem for multi-agentM = {Πi}

|N |
i=1 is a set of agent problems, where for each agent

n ∈ N the problem is:

Πi =
〈
Vi = V pub ∪ V priv

i ,Ai = A
pub
i ∪Apriv

i , I ,G
〉

, (3)

where Vi is a set of variables, s.t. each V ∈ Vi has a finite domain dom(V), if |dom(V)| = 2, then all variables
are binary. V pub is the set of public variables common to all agents and V priv

i is the set of variables private to
agent ni ∈ N , s.t. Vpub ∩ Vpriv

i = ∅. The state I is the initial state and G is the goal.

Each action is defined as a tuple a = 〈pre(a), eff(a), cost(a)〉, where pre(a) and eff(a) are partial
states representing the precondition and effect, respectively, cost(a) is the cost of action a. So, the state
transition can be defined as Γ(s, a) |= s ∪ eff(a). We follow the formal treatment of privacy-preserving
planning from [10,30], for each agent n ∈ N , the private parts of the problem Πi are:

• The set of private variables V priv
i and the number |V priv

i |, the domains dom(V) and the size
|dom(V)|.

• The set of private actions Apriv
i and the number |Apriv

i |, the number and values of variables in
pre(a) and eff(a).

• The private parts of the public actions inApub, such as the numbers and values of private variables
in pre(a) ∩ V priv

i and eff(a) ∩ V priv
i for each action a ∈ Apub

i .

3.2.1. Task Plan Generation

The multi-agent planning problem M = {Πi}
|N |
i=1 can be viewed from different perspectives,

called projections. The view of a single agent ni on the global problem is not the only Πi, projections
of other agents are available as well. As for agent ni, the public projection of an action a ∈ Apub

i is
aB = 〈pre(a)B, eff(a)B〉, the public projection of Πi can be represented as follows:

ΠB
i =

〈
V pub,AB

i = {aB|a ∈ Apub
i }, I

B,GB
〉

(4)

So, the task planning solution to Πi is a sequence πi of actions from Ai ∪
⋃

j 6=iAB
i , the goal state

Gk = πi ◦ I , which means Γ(I , πi) |= Gk. The public projection of π is πB = (aB1 , ..., aBk ) with all

private actions omitted. The global solution ofM is a set of task plans {πi}
|N |
i=1, s.t. each πi is a local

solution to Πi. If πB
i = πB

j for the public action, we call these local solutions equivalent.

3.2.2. Privacy Leakage Analysis

We adopt the privacy leakage metric from [47,48], as we set the number |V priv
i | ≤ p and the size

d = max
V∈V priv

i
|dom(V)|. The prior information is a tuple:

Iprio =
〈
ΠB, πB, p, b

〉
. (5)

The additional information obtained by the adversary is a sequence of messages exchanged
between the agents N = (n1, ...nk). After information exchange during the planning process,
the posterior information available to the adversary is a tuple:

Ipost =
〈
ΠB, πB, p, b,N

〉
. (6)
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Considering the transition system of the Πi, we associate the prior information Iprio and Ipost with
variables τ(Iprio) and τ(Ipost), which represent the uncertainty of the planning algorithm. So, the final
information leakage is computed as:

PIL = log τ(Iprio)− log τ(Ipost) = log
τ(Iprio)

τ(Ipost)
. (7)

The upper bound of all transition systems’ number is t0 =
(

2d2 − 1
)p

. After classifying the
actions into five categories, i.e., inital -applicable (ia), not-inital-applicable (nia), privately-dependent
(pd), privately-independent (pi), privately-nondeterministic (pn) [47], the final information leakage
formula is as follows:

PIL = log
∏aB∈AB τprio(a)

∏aB∈AB τpost(a)
. (8)

In this paper, we mainly use MAFS algorithms for task planning, and the privacy leakage can be
computed as follows: we first reconstruct the search tree, then identify the parent states and applied
actions, and classify the actions into five classes (ia, nia, pd, pi, pn). Finally, we compute the information
leakage (see Algorithm 1 for details) . Here, the privacy leakage computation with sets of actions can
be reformulated as a mixed-integer linear program (MILP) problem with disjunctive constraints.

Algorithm 1: Privacy information leakage analysis based on the MAFS algorithm.

Input:M = {Πi}
|N |
i=1, number p, and size d

Output: privacy information leakage PIL
1 reconstruct the search tree based on the MAFS algorithm [30].
2 identify possible parent states.
3 identify possible applied actions.
4 classify actions into five classes (ia, nia, pd, pi, pn).
5 compute privacy information leakage using the Equation (8).
6 return PIL

For the possible number of the transition system, we construct the following combinatorial
optimization problem, which can be solved using the off-the-shelf solver IBM CPLEX [49].

max log( ∏
aB∈AX

τpost(aB)) (9)

s.t.
∨

aB∈AX

τpost(aB) ≤ tX , (10)

where the tX ≤ t0, action type X ∈ {ia, nia, pd, pi, pn}, AX ⊆ AB.

3.3. Observability Controlled Path Planning

In adversarial environments, the observed agents try to control the observation of the adversary
by obfuscating their goals. Considering the observation of the adversary in the adversarial setting
(mission planning, reconnaissance, etc.), privacy immediately follows from setting with partial
observation [28,35,40]. The observability controlled path planning problem is to find a path from
the start location to the goal on the navigation map (discrete grid, connected graph, or continuous
space representation). So, the discrete path planning problem can be defined as follows:

Definition 7 (Observability controlled path planning). For every agent n ∈ N , the observability controlled
path planning problem is a tuple [35]:

Φ = 〈D, I ,G,P , Ω,O〉 (11)
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• D = 〈S ,A, c〉 is the path planning domain, S is a non-empty set of location nodes, A ⊆ S × S is a set of
action-related edges, c : E 7→ R+

0 returns the cost of traversing each edge.
• I ∈ S is the start location and gr ∈ G is the real goal;
• G = {gr ∪ g0 ∪ g1 . . . } is a set of candidate goals, where gr is the real goal
• Ω = {oi|i = 1, . . . } is a set of m observations that can be emitted as a result of the action taken and the

state transition.
• O : (A× S)→ Ω is a many-to-one observation function which maps the taken action and the next state

reached to an observation in Ω.

In adversarial environments, the adversary will receive the observation sequence associated the
actions performed by the observed agent. We could model this process as a one-sensor model, where
the adversary maintains one belief space according to the observations. Following the definition of
belief space from [35], we take the belief space of the adversary into account in path planning, so as to
control the observability of the adversary.

Definition 8. A belief bn is induced by observation Oi, emitted by action ai, resulting in state ŝi. The belief
state and belief update are defined as:

b0 = {ŝ0|O (∅, I) = o0 ∧O (∅, ŝ0) = o0} , (12)

bi+1 = update (bi, oi+1) = {ŝi+1|∃â, Γ (ŝi, â) |= ŝi+1 ∧ ŝi ∈ bi ∧O (â, ŝi+1) = oi+1}. (13)

3.3.1. Path Plan Generation

Decoy Goals: If the adversary is aware of the actor’s candidate goals but not the real goal.
An observability controlled path plan is to hide the real goal with decoy goals, where Gn = {g0 ∪
. . . ∪ gn−1} is the set of decoy goals, the observation sequence should not be biased by any goal in Gn.
The objective here is to minimize the privacy leakage by making the adversary’s belief space consistent
with the decoy goals.

Definition 9. An observability controlled path plan with decoy goals:

Γ(I , πk) |= gr and |G ∈ G : ∃s ∈ bn, s| = G| > m (14)

where m < n, for ease of computation, in this paper, we set m = 2, as in the final stage, path generation will
only depend on two goals.

Observability Controlled Path: Predictability and obfuscation are a pair of incompatible concepts.
With the decoy goals selected, patrolling on an observability controlled plan, the observed agent will
start with obfuscated steps, but the agent will adopt predictable steps when approaching the goal in
the end. So, one observability controlled path is the one with steps that are obfuscated for as long as
possible. There is one obfuscated turning point, where all subsequent steps are predictable.

We will employ one probabilistic goal recognition model as the adversary’s sensor model.

Definition 10. An obfuscated turning point is the final state in the observation sequence On = {o1, ...on},
s.t. the posterior probability of the real goal does not exceed any selected decoy goals, otherwise, the point is
predictable to the adversary.

P(gr|On) ≤ P(g|On), ∀g ∈ Gn\{gr} (15)

Definition 11. A last obfuscated turning point is the last state πi of one given path π, which all subsequent
states, π j, ∀j ∈ {i + 1, ...|π|} are predictable to the adversary.
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Here, we mainly focus on the last obfuscated turning point. The observability controlled path
plan will cover two parts. As shown in Figure 4, one part of the obfuscated path from the start point
to the last obfuscated turning point, and one part of the predictable path from the last obfuscated
turning point (LOTP) to the real goal. We can get the strong goal obfuscated path π with continually
obfuscated steps to the LOTP. Using the cost-difference-based probabilistic goal recognition model
introduced in [50], we can get the LOTP after selecting the decoy goals:

optc (LOTP, gr) ≈
optc (gr, gd) + optc (s, gr)− optc (s, gd)

2
, (16)

where gd is the selected decoy goal, and optc(a, b) is the optimal cost from the state a to b. If we adopt
discrete grid or graph-based discrete domain representations for path planning, we will approximate
the LOTP to the closet state.

Last Obfuscated Turning Point

Real Goal

Initial State

Decoy Goal

Figure 4. The last obfuscated turning point.

Diverse Path: When the adversary knows the observed agent’s goal, in order to control the
adversary’s observability, we need diverse paths. We can compute the diversity between all the pairs
of plans using one plan distance metric mentioned in Appendix A.1. Two plans are a δ distant pair
with respect to distance metric d, if d(p1, p2) = δ. A path plan set (PPS) induced by plan p starting at
I is minimally δ distant if δ = minp1,p2∈PPS d(p1, p2).

Definition 12. A plan πk is k diverse path plan (k ≥ 2):

dmin(PPS(I , πk)) ≥ δ and |PPS(I , πk)| ≥ k. (17)

As a result, if the adversary does not know the real goal, the first part of the path is done by
performing a two-decoy-goals path planning. After getting the LOPT, we can compute the whole path
plan. If the adversary does know the real goal, we need to generate diverse path plans. The details of
an observability controlled path plan are given in Algorithm 2.

3.3.2. Privacy Leakage Analysis

Planning with obfuscated goals involves preserving privacy with minimized information leakage.
Under the requirement of privacy preservation, the observed agent will deliberately choose misleading
actions to obfuscate the goal. We can quantify the information leakage of the states and actions
as follows:
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Algorithm 2: An observability controlled path plan generation algorithm.
Input: Φ = 〈D,S ,G,P , Ω,O〉
Output: An observability controlled path plan π

1 if GoalUnknown then
2 LOTP=GetLOTP(I ,Gr)
3 obfpath=ObfusPath(I , LOTP)
4 intpath=PredPath(LOTP, Gr)
5 return obfpath+intpath
6 end
7 else
8 divepath=DivePath(I , Gr)
9 return divepath

10 end
11 procedure GetLOTP(I ,Gr) . get the LOTP
12 procedure ObfusPath(I , LOTP) . generate obfuscated path
13 procedure PredPath(LOTP, Gr) . generate predictable path
14 procedure DivePath(I , Gr) . generate diverse path

Definition 13 (S-PI). The privacy information leakage based state privacy information metric is defined as:

IS−PI(sj) = H( max
gi∈G\{gr}

P
(

gi|sj
)
− P

(
gr|sj

)
) = −log( max

gi∈G\{gr}
P
(

gi|sj
)
− P

(
gr|sj

)
). (18)

Definition 14 (A-PI). As for ai ∈ E(s), aj ∈ E ′(s), and E ′(s) = E(s)\ai. The information leakage based
action privacy information metric is defined as:

IA−PI(ai) =
∑aj∈E ′(s) IS−PI(s)

|E ′(s)| . (19)

Using the action privacy information metric IS−PI(s) as additional action cost, we can analyze
the privacy leakage of the observability controlled path plan.

4. Experiments

In this section, experiments were conducted for opponent-aware privacy-preserving planning.
All the experiments were executed on one Alienware running Ubuntu 16.04 with 4 CPU cores and 8
GB of RAM. We used the MAFS algorithm [30] for information sharing restricted task plan generation.
The algorithms for privacy leakage analysis and observability controlled path planning were coded
with Python.

4.1. Plan Generation and Privacy Leakage Analysis

Here, we first generate task plans for a robot in the urban security patrol scenario. Then we
present three different goal configuration scenarios for path planning. Besides, we analyze the privacy
leakage for the task plan and path plan. Finally, we present an indoor robot demonstration using the
TurtleBot3 Burger [51].
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4.1.1. Task Plan Generation and Privacy Leakage Analysis

As shown in Figure 1, we now define some variables for security patrol scenario. The interaction
of the simplified security patrol scenario can be modeled between four agents: two UGVs, one supply
center (the malicious teammate), and the hostile observer (opponent).

Variables Definition: For task planning under a cooperative environment,N = {UGV1, UGV2, SC}.
After patrolling any candidate checkpoint in zone 1, UGV will return to the supply center to charge
and transmit collected data, and the task will be completed after patrolling the two zones.

As shown in Table 2, we set the binary variables with T/F values. In the initial state, the supply
center has enough supplies, the UGV is charged. In the goal state, the task of the UGV is complete.
The following set of variables can be used to describe the task planning problem.

Information Sharing Restricted Task Plan: Here, we simply set UGV1 for zone 1 and UGV2 for
zone2. Each UGV will choose two checkpoints to patrol (e.g., checkpoint 1 and 3). The actions of
AUGV1 and ASC can be formulated as shown in Table 3. We provide the action descriptions for UGVs
and the supply center in Figure 5.

Table 2. Variables for task planning.

Variable in Description Variable Values I G

UGV1 is charged cg1 T/F T -
V pub UGV2 is charged cg2 T/F T -

task1 is complete tc1 T/F F T
task2 is complete tc2 T/F F T

checkpoint 1 is patrolled cp1 T/F F -
checkpoint 2 is patrolled cp2 T/F F -

V priv
UGV1 checkpoint 3 is patrolled cp3 T/F F -

checkpoint 4 is patrolled cp4 T/F F -
zone 1 is patrolled zn1 T/F F T

checkpoint 5 is patrolled cp5 T/F F -
checkpoint 6 is patrolled cp6 T/F F -

V priv
UGV2 checkpoint 7 is patrolled cp7 T/F F -

checkpoint 8 is patrolled cp8 T/F F -
zone 2 is patrolled zn2 T/F F T

V priv
SC supply center can provide support sc T/F T -

Table 3. Actions for UGV and supply center.

Action Description Label pre(a) eff(a)

patrol checkpoint 1 PC1 {cg1 = T} {cp1 = T, cg1 = F}
Apub

UGV1 patrol checkpoint 3 PC3 {cg1 = T} {cp3 = T, cg1 = F}
task1 is complete TC {cp1 = T, cp3 = T, tc1 = F} {zn1 = T, tc = T}

Apub
SC recharge RC {sc = T, cg1 = F} {sc = F, cg1 = T}

recharge and resupply RR {sc = F, cg1 = F} {sc = T, cg1 = T}
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(define (domain ugv)
(:requirements :factored-privacy)

(:constants
(:private

cp1 cp3
)

)
(:predicates

(ugv-is-charged)
(task-complete)

(:private
(checkpoint-complete ?cp)

)
)
(:action patrol-checkpoint

:parameters (?cp)
:precondition (and

(ugv-is-charged)
(not (checkpoint-complete ?cp))

)
:effect (and

(not (ugv-is-charged))
(checkpoint-complete ?cp)

)
)
(:action task-complete

:parameters ()
:precondition (and

(checkpoint-complete cp1)
(checkpoint-complete cp3)
(not (task-complete))

)
:effect (and

(task-complete)
)

)
)

(define (domain ugv)
(:requirements :factored-privacy)

(:predicates
(ugv-is-charged)
(task-complete)

(:private
(center-can-support)

)
)

(:action recharge
:parameters ()
:precondition (and

(not (ugv-is-charged))
(center-can-support)

)
:effect (and

(ugv-is-charged)
(not (center-can-support))

)
)

(:action recharge-and-resupply
:parameters ()
:precondition (and

(not (ugv-is-charged))
(not (center-can-support))

)
:effect (and

(ugv-is-charged)
(center-can-support)

)

)

)

Figure 5. Action descriptions for UGV and supply center for the security patrol scenario.

In the following, we will compute the task plan of UGV1 for zone 1 security patrol. The projection
of public actions and related transition system are shown in Figure 6. The projection results of the
public actions are shown in Table 4. The actions PC1B, PC3B ∈ AUGV , RCB, RRB ∈ ASC both have an
equal projection. We denote them simply as PCB and RB.
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Figure 6. The public projection and related transition systems of the patrol action. The arrows represent
the transition for the given variable.
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Table 4. Projection the public actions of the UGV and the supply center.

Action pre(a) eff(a)

PCB {cg1 = T} {cg1 = F}
TCB {tc = F} {tc = T}
RB {cg1 = F} {cg1 = T}

We chose MAFS and Secure-MAFS algorithms for task plan generation. The solution of UGV1 to
the security patrol scenario is πB

UGV1 = {R, PC, R, PC, TC}, which is public to the supply center.
Privacy Leakage Analysis: Then, complete transition is shown in Figure 7. In MAFS, if the state

of the UGV is expanded using public action, the resulting public projection state will be sent to the
supply center. We analyzed the privacy leakage based on the sent and received states from the UGV.

{sc}

{cg1}
{cp1} {cp3}
PC1 PC3

RC

RR RR

{cp3, cg1, sc}{cp1, cg1, sc}

{cp1, cp3, sc}
PC3 PC1

{cp1, cp3, sc, tc}

{cg1, tc} {tc}

{cg1} {}

PC

PC

R

R
TC

Figure 7. The public projection of actions and the related transition system. The arrows represent
transition for the given variable.

An upper bound of the UGV transition system is t0 = 15p, where p = |V priv
UGV1|. After classifying

the action types, the PCB belongs to {ia, pi, pn}, TCB belongs to {pd}. τia
PC = 12p, τ

pi
PC = 15p − 6p,

τ
pn
PC = 15p − 8p, τ

ia×pi
PC = 12p − 3p, τ

ia×pn
PC = 12p − 6p, τ

ia×pi
TC = 15p − 3p. Using Algorithm 1 with

Equation (8), we could compute the privacy information leakage for UGV1: PIL = log τ(Iprio) −
log τ(Ipost) = 10.4− 9.7 ≈ 0.7.

4.1.2. Path Plan Generation and Privacy Leakage Analysis

Observability Controlled Path Plan: As shown in Figure 8, we used a 13× 13 discrete grids based
simulation environment with different configurations (line, circular, and triangular) for experimental
evaluation. We simply set m = 2, k = 2, and the UGV patrolled one checkpoint through one
observability controlled path and chose one diverse path back to the supply center. For any checkpoint,
after choosing the candidate decoy checkpoints, we used Algorithm 2 to generate an observability
controlled path.



Electronics 2020, 9, 5 15 of 21

UGV Supply Center Checkpoint

1
2

3

(a)Paths for checkpoint 1

UGV Supply Center Checkpoint

1
2

3

(b)Paths for checkpoint 2

UGV Supply Center Checkpoint

1
2

3

(c)Paths for checkpoint 3

UGV Supply Center Checkpoint

1

2

3

(d)Paths for checkpoint 1

UGV Supply Center Checkpoint

1

2

3

(e)Paths for checkpoint 2

UGV Supply Center Checkpoint

1

2

3

(f)Paths for checkpoint 3

UGV Supply Center Checkpoint

1

2

3

(g)Paths for checkpoint 1

UGV Supply Center Checkpoint

1

2

3

(h)Paths for checkpoint 2

UGV Supply Center Checkpoint

1

2

3

(i)Paths for checkpoint 3

Figure 8. Observability controlled paths to the real checkpoint (blue), and diverse paths back to the
supply center (red): (a) Line configuration. (b) Circular configuration. (c) Triangular configuration.

Privacy Leakage Analysis: Following the “single-observation” cost difference based probabilistic
goal recognition model from [50], we could pre-compute the cost difference for each state offline to
calculate the likelihood that each goal will be the selected checkpoint. As shown in Figure 9, we
could create heatmaps for the discrete grids domain, showing the posterior goal probability of each
goal at each state. Armed with heatmaps, we could use the state/action privacy information metrics
(Equations (13) and (14)) for privacy leakage analysis. The results of the privacy leakage of the paths to
each checkpoint under different configurations are shown in Table 5.
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UGV Supply Center Checkpoint

1
2

3

(a) Line configuration

UGV Supply Center Checkpoint

1

2

3

(b) Circular configuration

UGV Supply Center Checkpoint

1

2

3

(c) Triangular configuration

Figure 9. Heatmaps for different configurations.

Table 5. The privacy leakage of the paths to each checkpoint under different configurations.

Configuration Checkpoint1 Checkpoint2 Checkpoint3

Line 13.5 14.9 13.5
Circular 20.7 10.5 10.5

Triangular 12.3 12.2 14.7

4.2. Indoor Robot Demonstration

To simulate the security patrol scenario with an internal robot and an external human, we used
the TurtleBot3 Burger for an indoor robot demonstration. The TurtleBot3 Burger is a mobile robot
platform established on ROS (robot operation system). Table 6 shows the configuration. As shown in
Figure 10, the TurtleBot3 Burger contains several modules, and we designed the ROS nodes for the
software framework and built an experimental scene with four checkpoints. The initial state of the
robot is in the middle of the scene.

Table 6. The configuration of TurtleBot3 Burger.

Items Configuration

Lidar 360-degree laser Lidar LDS-01 (HLS-LFCD2)
SBC Raspberry PI 3 and Intel Joule 570x

Battery Lithium polymer 11.1V 1800 mAh
IMU Gyroscope 3 Axis, Accelerometer 3 Axis, Magnetometer 3 Axis
MCU OpenCR (32-bit ARM Cortex M7)
Motor DYNAMIXEL(XL430)

As shown in Figure 11, after generating the information sharing restricted task plan, the robot
should generate an observability controlled path plan for checkpoint patrol. As for any checkpoint,
the robot will follow the generated path to visit. The trajectories of the robot and the objects in the
scene were visualized through RVIZ, and the environment map was built through the Lidar LDS-01.
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(a)Simulation environment
with TurtleBot3 Burger

Control 

Trajectory

Path Planning 

Task Planning

Navigation 
Package

Basic Driver

Task Planning 
Node

Path Planning 
Node

Navigation and 
Location 

Data Processing 
Node

Perception

Raspberry Pi 
Camera

LDS-01 Driver

(b)Software framework

Figure 10. Indoor simulation environment.

(a) Robot on the path to checkpoint 2

UGV Supply Center Checkpoint

1

2 3

4

(b) Path on discrete grids

(c) Robot on the path to supply center

UGV Supply Center Checkpoint

1

2 3

4

(d) Path on discrete grids

Figure 11. Indoor robot demonstration: (a,c) the robot heads to checkpoint 2 with an observability
controlled path, and returns to the supply center with a diverse path. (b,d) The corresponding paths
on discrete grids.
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5. Conclusions and Future Work

In this paper, the opponent-aware privacy-preserving planning problem in a complex environment
is addressed and two questions are answered. Owing to the explosion of privacy preservation in
planning, we first define opponent-aware privacy-preserving planning. Then, we present approaches
for information sharing restricted task plan generation and observability controlled path plan
generation. The final experiments with privacy leakage analysis and the indoor robot demonstration
show the applicability of the proposed approaches to generating plans. In fact, many pieces of research
have modeled the interaction between patrol UGVs and adversary with Stackelberg or stochastic
games, in which agents pursue utility maximization. Additionally, many robust and online goal
recognition approaches have been proposed, such as the self-modulating model proposed in [38]
for rational and irrational agents. In the future, we will use a stochastic game model with active
adversaries to model this problem.
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Abbreviations

The following abbreviations are used in this manuscript:

UGV Unmanned Ground Vehicle
MAP Multi-Agent Planning
PIL Privacy Information Leakage
DMAP Deterministic MAP
I-POMDPs Interactive POMDPs
Dec-POMDPs Decentralized POMDP
MPC Multi-Party Computation
DCOP Distributed Constraint Optimization Problems
MAFS Multi-Agent Forward Search
MADLA Multi-Agent Distributed and Local Asynchronous
MILP Mixed Integer Linear Program
PPS Path Plan Set
LOTP Last Obfuscated Turning Point
ROS Robot Operation System

Appendix A. Metrics

Appendix A.1. Plan Distance Metrics

We leverage three alternatives to measure the plan distance and one privacy leakage metric
to quantify the information leakage. Three kinds of plan distance metrics have been introduced
in [35,52–54]—namely, action distance, causal link distance, and state sequence distance.

Definition A1 (Action distance). The set of unique actions in a plan π is A(π) = {a | a ∈ π}. Given the
action sets A(p1) and A(p2) of two plans p1 and p2, respectively, the action distance can be defined:

dA(p1, p2) = 1− |A(p1) ∩ A(p2)|
|A(p1) ∪ A(p2)|

. (A1)
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Definition A2 (Causal link distance). 〈ai, pi, ai+1〉 is the tuple form of a causal link, the predicate pi can be
produced as an effect of action ai and used as a precondition for ai+1. The causal link distance for the causal link
sets C(p1) and C(p2) of plans p1 and p2 can be defined:

dC(p1, p2) = 1− |C(p1) ∩ C(p2)|
|C(p1) ∪ C(p2)|

. (A2)

Definition A3 (State sequence distance). Given two state sequence sets S(p1) = (sp1
0 , . . . , sp1

n ) and S(p2) =

(sp2
0 , . . . , sp3

n′ ) for p1 and p2, respectively, where n ≥ n′ are the lengths of the plans, sp1
k is overloaded to denote

the set of variables in state sk of plan p1, the state sequence distance can be defined:

dS(p1, p2) =
1
n
[ n′

∑
k=1

(1−
|sp1

k ∩ sp2
k |

|sp1
k ∪ sp2

k |
) + n− n′

]
. (A3)
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47. Štolba, M.; Tožička, J.; Komenda, A. Quantifying privacy leakage in multi-agent planning. ACM Trans.
Internet Technol. (TOIT) 2018, 18, 28. [CrossRef]

48. Štolba, M.; Fišer, D.; Komenda, A. Privacy Leakage of Search-Based Multi-Agent Planning Algorithms.
In Proceedings of the International Conference on Automated Planning and Scheduling, Berkeley, CA, USA,
11–15 July 2019; Volume 29, pp. 482–490.

49. IBM CPLEX. Available online: http://www.ibm.com/us-en/marketplace/ibm-ilog-cplex (accessed on
1 March 2019).

50. Masters, P.; Sardina, S. Cost-based goal recognition in navigational domains. J. Artif. Intell. Res. 2019, 64,
197–242. [CrossRef]

51. TurtleBot3. Available online: https://www.turtlebot.com (accessed on 1 August 2019).
52. Srivastava, B.; Nguyen, T.A.; Gerevini, A.; Kambhampati, S.; Do, M.B.; Serina, I. Domain independent

approaches for finding diverse plans. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), Hyderabad, India, 6–12 January 2007.

53. Nguyen, T.A.; Do, M.; Gerevini, A.E.; Serina, I.; Srivastava, B.; Kambhampati, S. Generating diverse plans to
handle unknown and partially known user preferences. Artif. Intell. 2012, 190, 1–31. [CrossRef]

54. Bryce, D. Landmark-based plan distance measures for diverse planning. In Proceedings of the Twenty-Fourth
International Conference on Automated Planning and Scheduling, Portsmouth, NH, USA, 21–26 June 2014.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1145/3133326
http://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
http://dx.doi.org/10.1613/jair.1.11343
https://www.turtlebot.com
http://dx.doi.org/10.1016/j.artint.2012.05.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Privacy and Security Assumption
	Privacy-Preserving Planning
	Information Leakage Metric

	Methodology
	Opponent-Aware Privacy-Preserving Planning
	Information Sharing Restricted Task Planning
	Task Plan Generation
	Privacy Leakage Analysis

	Observability Controlled Path Planning
	Path Plan Generation
	Privacy Leakage Analysis


	Experiments
	Plan Generation and Privacy Leakage Analysis
	Task Plan Generation and Privacy Leakage Analysis
	Path Plan Generation and Privacy Leakage Analysis

	Indoor Robot Demonstration

	Conclusions and Future Work
	Metrics
	Plan Distance Metrics 

	References

