Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = adenine base editing (ABE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1377 KiB  
Article
In Silico CRISPR-Cas-Mediated Base Editing Strategies for Early-Onset, Severe Cone–Rod Retinal Degeneration in Three Crumbs homolog 1 Patients, including the Novel Variant c.2833G>A
by Hoda Shamsnajafabadi, Maria Kaukonen, Julia-Sophia Bellingrath, Robert E. MacLaren and Jasmina Cehajic-Kapetanovic
Genes 2024, 15(5), 625; https://doi.org/10.3390/genes15050625 - 15 May 2024
Cited by 4 | Viewed by 2274
Abstract
Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. [...] Read more.
Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone–rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone–rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone–rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition. Full article
(This article belongs to the Special Issue Study of Inherited Retinal Diseases—Volume II)
Show Figures

Figure 1

20 pages, 1842 KiB  
Review
Application of CRISPR-Cas System to Mitigate Superbug Infections
by Ali A. Rabaan, Mona A. Al Fares, Manar Almaghaslah, Tariq Alpakistany, Nawal A. Al Kaabi, Saleh A. Alshamrani, Ahmad A. Alshehri, Ibrahim Abdullah Almazni, Ahmed Saif, Abdulrahim R. Hakami, Faryal Khamis, Mubarak Alfaresi, Zainab Alsalem, Zainab A. Alsoliabi, Kawthar Amur Salim Al Amri, Amal K. Hassoueh, Ranjan K. Mohapatra, Kovy Arteaga-Livias and Mohammed Alissa
Microorganisms 2023, 11(10), 2404; https://doi.org/10.3390/microorganisms11102404 - 26 Sep 2023
Cited by 5 | Viewed by 4532
Abstract
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type [...] Read more.
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance)
Show Figures

Figure 1

13 pages, 2957 KiB  
Article
Highly Efficient A-to-G Editing in PFFs via Multiple ABEs
by Qiqi Jing, Weiwei Liu, Haoyun Jiang, Yaya Liao, Qiang Yang and Yuyun Xing
Genes 2023, 14(4), 908; https://doi.org/10.3390/genes14040908 - 13 Apr 2023
Cited by 2 | Viewed by 2383
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs) are recently developed CRISPR-mediated genome-editing tools that do not introduce double-strand breaks. In this study, five ABEs, ABE7.10, ABEmax, NG-ABEmax, ABE8e and NG-ABE8e, were used to generate A-to-G (T-to-C) conversions in five genome loci [...] Read more.
Cytosine base editors (CBEs) and adenine base editors (ABEs) are recently developed CRISPR-mediated genome-editing tools that do not introduce double-strand breaks. In this study, five ABEs, ABE7.10, ABEmax, NG-ABEmax, ABE8e and NG-ABE8e, were used to generate A-to-G (T-to-C) conversions in five genome loci in porcine fetal fibroblasts (PFFs). Variable yet appreciable editing efficiencies and variable activity windows were observed in these targeting regions via these five editors. The strategy of two sgRNAs in one vector exhibited superior editing efficiency to that of using two separate sgRNA expression vectors. ABE-mediated start-codon mutation in APOE silenced its expression of protein and, unexpectedly, eliminated the vast majority of its mRNA. No off-target DNA site was detected for these editors. Substantial off-target RNA events were present in the ABE-edited cells, but no KEGG pathway was found to be significantly enriched. Our study supports that ABEs are powerful tools for A-to-G (T-to-C) point-mutation modification in porcine cells. Full article
(This article belongs to the Special Issue CRISPR-Based Nucleic Acid Detection and Genome Editing in Animals)
Show Figures

Figure 1

11 pages, 1618 KiB  
Review
Advances in Gene Therapy Techniques to Treat LRRK2 Gene Mutation
by Sun-Ku Chung and Seo-Young Lee
Biomolecules 2022, 12(12), 1814; https://doi.org/10.3390/biom12121814 - 5 Dec 2022
Cited by 7 | Viewed by 3741
Abstract
Leucine-rich repeat kinase 2 (LRRK2) gene mutation is an autosomal dominant mutation associated with Parkinson’s disease (PD). Among LRRK2 gene mutations, the LRRK2 G2019S mutation is frequently involved in PD onset. Currently, diverse gene correction tools such as zinc finger nucleases [...] Read more.
Leucine-rich repeat kinase 2 (LRRK2) gene mutation is an autosomal dominant mutation associated with Parkinson’s disease (PD). Among LRRK2 gene mutations, the LRRK2 G2019S mutation is frequently involved in PD onset. Currently, diverse gene correction tools such as zinc finger nucleases (ZFNs), helper-dependent adenoviral vector (HDAdV), the bacterial artificial chromosome-based homologous recombination (BAC-based HR) system, and CRISPR/Cas9-homology-directed repair (HDR) or adenine base editor (ABE) are used in genome editing. Gene correction of the LRRK2 G2019S mutation has been applied whenever new gene therapy tools emerge, being mainly applied to induced pluripotent stem cells (LRRK2 G2019S-mutant iPSCs). Here, we comprehensively introduce the principles and methods of each programmable nuclease such as ZFN, CRISPR/Cas9-HDR or ABE applied to LRRK2 G2019S, as well as those of HDAdV or BAC-based HR systems used as nonprogrammable nuclease systems. Full article
(This article belongs to the Special Issue Pathological Roles of LRRK2)
Show Figures

Figure 1

10 pages, 1051 KiB  
Article
Potential CRISPR Base Editing Therapeutic Options in a Sorsby Fundus Dystrophy Patient
by Maram E. A. Abdalla Elsayed, Maria Kaukonen, Peter Kiraly, Jasmina Cehajic Kapetanovic and Robert E. MacLaren
Genes 2022, 13(11), 2103; https://doi.org/10.3390/genes13112103 - 12 Nov 2022
Cited by 4 | Viewed by 2064
Abstract
TIMP3 mutations are associated with early-onset macular choroidal neovascularisation for which no treatment currently exists. CRISPR base editing, with its ability to irreversibly correct point mutations by chemical modification of nucleobases at DNA level, may be a therapeutic option. We report a bioinformatic [...] Read more.
TIMP3 mutations are associated with early-onset macular choroidal neovascularisation for which no treatment currently exists. CRISPR base editing, with its ability to irreversibly correct point mutations by chemical modification of nucleobases at DNA level, may be a therapeutic option. We report a bioinformatic analysis of potential therapeutic options in a patient presenting with Sorsby fundus dystrophy. Genetic testing in a 35-year-old gentleman with bilateral macular choroidal neovascularisation revealed the patient to be heterozygous for a TIMP3 variant c.610A>T, p.(Ser204Cys). Using a glycosylase base editor (GBE), another DNA-edit could be introduced that would revert the variant back to wild-type on amino acid level. Alternatively, the mutated residue could be changed to another amino acid that would be better tolerated, and for that, an available ‘NG’-PAM site was found to be available for the SpCas9-based adenine base editor (ABE) that would introduce p.(Ser204Arg). In silico analyses predicted this variant to be non-pathogenic; however, a bystander edit, p.Ile205Thr, would be introduced. This case report highlights the importance of considering genetic testing in young patients with choroidal neovascularisation, particularly within the context of a strong family history of presumed wet age-related macular degeneration, and describes potential therapeutic options. Full article
(This article belongs to the Special Issue Genetics in Inherited Retinal Diseases)
Show Figures

Figure 1

20 pages, 2916 KiB  
Article
Correction of Fanconi Anemia Mutations Using Digital Genome Engineering
by Christopher J. Sipe, Mitchell G. Kluesner, Samuel P. Bingea, Walker S. Lahr, Aneesha A. Andrew, Minjing Wang, Anthony P. DeFeo, Timothy L. Hinkel, Kanut Laoharawee, John E. Wagner, Margaret L. MacMillan, Gregory M. Vercellotti, Jakub Tolar, Mark J. Osborn, R. Scott McIvor, Beau R. Webber and Branden S. Moriarity
Int. J. Mol. Sci. 2022, 23(15), 8416; https://doi.org/10.3390/ijms23158416 - 29 Jul 2022
Cited by 7 | Viewed by 4721
Abstract
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The [...] Read more.
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using ‘digital’ genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 2180 KiB  
Article
Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools
by Dongchang Zeng, Zhiye Zheng, Yuxin Liu, Taoli Liu, Tie Li, Jianhong Liu, Qiyu Luo, Yang Xue, Shengting Li, Nan Chai, Suize Yu, Xianrong Xie, Yao-Guang Liu and Qinlong Zhu
Int. J. Mol. Sci. 2022, 23(14), 7990; https://doi.org/10.3390/ijms23147990 - 20 Jul 2022
Cited by 20 | Viewed by 3631
Abstract
CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) [...] Read more.
CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools. The analysis of five NG-PAM target sites showed that these CGBEs achieved C-to-G conversions with monoallelic editing efficiencies of up to 27.3% in T0 rice, with major byproducts being insertion/deletion mutations. Moreover, for the A-to-Y (C or T) editing test, we fused the highly active adenosine deaminase TadA8e and the Cas9-nickase variant SpGn (with NG-PAM) with Escherichia coli endonuclease V (EndoV) and human alkyladenine DNA glycosylase (hAAG), respectively, to generate ABE8e-EndoV and ABE8e-hAAG vectors. An assessment of five NG-PAM target sites showed that these two vectors could efficiently produce A-to-G substitutions in a narrow editing window; however, no A-to-Y editing was detected. Interestingly, the ABE8e-EndoV also generated precise small fragment deletions in the editing window from the 5′-deaminated A base to the SpGn cleavage site, suggesting its potential value in producing predictable small-fragment deletion mutations. Overall, we objectively evaluated the editing performance of CGBEs in rice, explored the possibility of A-to-Y editing, and developed a new ABE8e-EndoV tool, thus providing a valuable reference for improving and enriching base editing tools in plants. Full article
(This article belongs to the Special Issue Crop Genome Editing)
Show Figures

Figure 1

18 pages, 4426 KiB  
Article
Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome
by Xiaojing Mao, Zheng-Mei Xiong, Huijing Xue, Markus A. Brown, Yantenew G. Gete, Reynold Yu, Linlin Sun and Kan Cao
Int. J. Mol. Sci. 2022, 23(10), 5499; https://doi.org/10.3390/ijms23105499 - 14 May 2022
Cited by 3 | Viewed by 3583
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in [...] Read more.
Hutchinson–Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in HGPS patients, severe skin phenotypes such as alopecia and sclerotic skins always develop with the disease progression. Here, we studied the HGPS molecular mechanisms focusing on early skin development by differentiating patient-derived induced pluripotent stem cells (iPSCs) to a keratinocyte lineage. Interestingly, HGPS iPSCs showed an accelerated commitment to the keratinocyte lineage than the normal control. To study potential signaling pathways that accelerated skin development in HGPS, we investigated the WNT pathway components during HGPS iPSCs-keratinocytes induction. Surprisingly, despite the unaffected β-catenin activity, the expression of a critical WNT transcription factor LEF1 was diminished from an early stage in HGPS iPSCs-keratinocytes differentiation. A chromatin immunoprecipitation (ChIP) experiment further revealed strong bindings of LEF1 to the early-stage epithelial developmental markers K8 and K18 and that the LEF1 silencing by siRNA down-regulates the K8/K18 transcription. During the iPSCs-keratinocytes differentiation, correction of HGPS mutation by Adenine base editing (ABE), while in a partial level, rescued the phenotypes for accelerated keratinocyte lineage-commitment. ABE also reduced the cell death in HGPS iPSCs-derived keratinocytes. These findings brought new insight into the molecular basis and therapeutic application for the skin abnormalities in HGPS. Full article
(This article belongs to the Special Issue Recent Advances in Intermediate Filaments)
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components
by Rahul Mahadev Shelake, Dibyajyoti Pramanik and Jae-Yean Kim
Int. J. Mol. Sci. 2022, 23(3), 1145; https://doi.org/10.3390/ijms23031145 - 20 Jan 2022
Cited by 19 | Viewed by 5204
Abstract
Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death [...] Read more.
Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs. However, optimization of newer BE tools in bacteria is challenging owing to the toxic effects of BE reagents expressed using strong promoters. Improved variants of two main BEs, cytidine base editor (CBE) and adenine base editor (ABE), capable of converting C to T and A to G, respectively, have been recently developed but yet to be tested for editing characteristics in bacteria. Here, we report a platform for in vivo rapid investigation of CRISPR-BE components in Escherichia coli (IRI-CCE) comprising a combination of promoters and terminators enabling the expression of nCas9-based BE and sgRNA to nontoxic levels, eventually leading to successful base editing. We demonstrate the use of IRI-CCE to characterize different variants of CBEs (PmCDA1, evoCDA1, APOBEC3A) and ABEs (ABE8e, ABE9e) for bacteria, exhibiting that each independent BE has its specific editing pattern for a given target site depending on protospacer length. In summary, CRISPR-BE components expressed without lethal effects on cell survival in the IRI-CCE allow an analysis of various BE tools, including cloned biopart modules and sgRNAs. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2319 KiB  
Article
In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention
by Julia-Sophia Bellingrath, Michelle E. McClements, Maria Kaukonen, Manuel Dominik Fischer and Robert E. MacLaren
Genes 2021, 12(12), 1908; https://doi.org/10.3390/genes12121908 - 27 Nov 2021
Cited by 7 | Viewed by 3200
Abstract
Mutations in the Crumbs homolog 1 (CRB1) gene cause both autosomal recessive retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). Since three separate CRB1 isoforms are expressed at meaningful levels in the human retina, base editing shows promise as a therapeutic [...] Read more.
Mutations in the Crumbs homolog 1 (CRB1) gene cause both autosomal recessive retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). Since three separate CRB1 isoforms are expressed at meaningful levels in the human retina, base editing shows promise as a therapeutic approach. This retrospective analysis aims to summarise the reported pathogenic CRB1 variants and investigate their amenability to treatment with currently available DNA base editors. Pathogenic single nucleotide variants (SNVs) were extracted from the Leiden open-source variation database (LOVD) and ClinVar database and coded by mutational consequence. They were then analyzed for their amenability to currently available DNA base editors and available PAM sites from a selection of different Cas proteins. Of a total of 1115 unique CRB1 variants, 69% were classified as pathogenic SNVs. Of these, 62% were amenable to currently available DNA BEs. Adenine base editors (ABEs) alone have the potential of targeting 34% of pathogenic SNVs; 19% were amenable to a CBE while GBEs could target an additional 9%. Of the pathogenic SNVs targetable with a DNA BE, 87% had a PAM site for a Cas protein. Of the 33 most frequently reported pathogenic SNVs, 70% were targetable with a base editor. The most common pathogenic variant was c.2843G>A, p.Cys948Arg, which is targetable with an ABE. Since 62% of pathogenic CRB1 SNVs are amenable to correction with a base editor and 87% of these mutations had a suitable PAM site, gene editing represents a promising therapeutic avenue for CRB1-associated retinal degenerations. Full article
(This article belongs to the Special Issue Genetics in Inherited Retinal Diseases)
Show Figures

Figure 1

9 pages, 1850 KiB  
Article
ABE8e with Polycistronic tRNA-gRNA Expression Cassette Sig-Nificantly Improves Adenine Base Editing Efficiency in Nicotiana benthamiana
by Zupeng Wang, Xiaoying Liu, Xiaodong Xie, Lei Deng, Hao Zheng, Hui Pan, Dawei Li, Li Li and Caihong Zhong
Int. J. Mol. Sci. 2021, 22(11), 5663; https://doi.org/10.3390/ijms22115663 - 26 May 2021
Cited by 20 | Viewed by 4434
Abstract
Adenine base editor containing TadA8e (ABE8e) has been reported in rice. However, the application of ABE8e in other plant species has not been described, and the comparison between ABE8e and ABE7.10, which is widely used in plants, has also been poorly studied. Here, [...] Read more.
Adenine base editor containing TadA8e (ABE8e) has been reported in rice. However, the application of ABE8e in other plant species has not been described, and the comparison between ABE8e and ABE7.10, which is widely used in plants, has also been poorly studied. Here, we developed the ABE8e with the polycistronic tRNA-gRNA expression cassette (PTG-ABE8e) and PTG-ABE7.10 and compared their A-to-G editing efficiencies using both transient and stable transformation in the allotetraploid Nicotiana benthamiana. We found that the editing efficiency of PTG-ABE8e was significantly higher than that of PTG-ABE7.10, indicating that ABE8e was more efficient for A-to-G conversion in N. benthamiana. We further optimized the ABE8e editing efficiency by changing the sgRNA expression cassette and demonstrated that both PTG and single transcript unit (STU) enhanced ABE8e efficiency for A-to-G conversion in N. benthamiana. We also estimated the potential off-target effect of PTG-ABE8e at potential off-targeting sites predicted using an online tool in transgenic plants, and no off-target editing event was found for potential off-targeting sites selected, indicating that ABE8e could specifically facilitate A-to-G conversion. Our results showed that ABE8e with PTG structure was more suitable for A-to-G conversion in N. benthamiana and provided valuable clues for optimizing ABE tools in other plants. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1533 KiB  
Review
CRISPR-Cas9 DNA Base-Editing and Prime-Editing
by Ariel Kantor, Michelle E. McClements and Robert E. MacLaren
Int. J. Mol. Sci. 2020, 21(17), 6240; https://doi.org/10.3390/ijms21176240 - 28 Aug 2020
Cited by 304 | Viewed by 32834
Abstract
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes [...] Read more.
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

9 pages, 2158 KiB  
Article
AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects
by Mingming Liang, Tingting Sui, Zhiquan Liu, Mao Chen, Hongmei Liu, Huanhuan Shan, Liangxue Lai and Zhanjun Li
Cells 2020, 9(8), 1786; https://doi.org/10.3390/cells9081786 - 27 Jul 2020
Cited by 28 | Viewed by 3928
Abstract
The CRISPR/nCas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) are capable of catalyzing C•G to T•A or A•T to G•C conversions, respectively, and have become new, powerful tools for achieving precise genetic changes in a wide range of organisms. These base [...] Read more.
The CRISPR/nCas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) are capable of catalyzing C•G to T•A or A•T to G•C conversions, respectively, and have become new, powerful tools for achieving precise genetic changes in a wide range of organisms. These base editors hold great promise for correcting pathogenic mutations and for being used for therapeutic applications. However, the recognition of cognate DNA sequences near their target sites can cause severe off-target effects that greatly limit their clinical applications, and this is an urgent problem that needs to be resolved for base editing systems. The recently discovered phage-derived proteins, anti-CRISPRs, which can suppress the natural CRISPR nuclease activity, may be able to ameliorate the off-target effects of base editing systems. Here, we confirm for the first time that AcrIIA2, AcrIIA4, and AcrIIA5 efficiently inhibit base editing systems in human cells. In particular, AcrIIA5 has a significant inhibitory effect on all base editing variant systems tested in our study. We further show that the off-target effects of BE3 and ABE7.10 were significantly reduced in AcrIIA5 treated cells. This study suggests that AcrIIA5 should be widely used for the precise control of base editing and to thoroughly “shut off” nuclease activity of both CBE and ABE systems. Full article
Show Figures

Figure 1

24 pages, 2727 KiB  
Review
Genome Editing Tools in Plants
by Tapan Kumar Mohanta, Tufail Bashir, Abeer Hashem, Elsayed Fathi Abd_Allah and Hanhong Bae
Genes 2017, 8(12), 399; https://doi.org/10.3390/genes8120399 - 19 Dec 2017
Cited by 82 | Viewed by 11931
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic [...] Read more.
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop