Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = adaptive pseudo-labeling (APL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3815 KiB  
Article
Collaborative Static-Dynamic Teaching: A Semi-Supervised Framework for Stripe-like Space Target Detection
by Zijian Zhu, Ali Zia, Xuesong Li, Bingbing Dan, Yuebo Ma, Hongfeng Long, Kaili Lu, Enhai Liu and Rujin Zhao
Remote Sens. 2025, 17(8), 1341; https://doi.org/10.3390/rs17081341 - 9 Apr 2025
Cited by 1 | Viewed by 480
Abstract
Stripe-like space target detection (SSTD) plays a crucial role in advancing space situational awareness, enabling missions like satellite navigation and debris monitoring. Existing unsupervised methods often falter in low signal-to-noise ratio (SNR) conditions, while fully supervised approaches require extensive and labor-intensive pixel-level annotations. [...] Read more.
Stripe-like space target detection (SSTD) plays a crucial role in advancing space situational awareness, enabling missions like satellite navigation and debris monitoring. Existing unsupervised methods often falter in low signal-to-noise ratio (SNR) conditions, while fully supervised approaches require extensive and labor-intensive pixel-level annotations. To address these limitations, this paper introduces MRSA-Net, a novel encoder-decoder network specifically designed for SSTD. MRSA-Net incorporates multi-receptive field processing and multi-level feature fusion to effectively extract features of variable and low-SNR stripe-like targets. Building upon this, we propose the Collaborative Static-Dynamic Teaching (CSDT) architecture, a semi-supervised learning architecture that reduces reliance on labeled data by leveraging both static and dynamic teacher models. The framework uses the straight-line prior of stripe-like targets to customize linearity and presents an innovative Adaptive Pseudo-Labeling (APL) strategy, dynamically selecting high-quality pseudo-labels to enhance the student model’s learning process. Extensive experiments on AstroStripeSet and other real-world datasets demonstrate that the CSDT framework achieves state-of-the-art performance in SSTD. Using just 1/16 of the labeled data, CSDT outperforms the second-best Interactive Self-Training Mean Teacher (ISMT) method by 2.64% in mean Intersection over Union (mIoU) and 4.5% in detection rate (Pd), while exhibiting strong generalization in unseen scenarios. This work marks the first application of semi-supervised learning techniques to SSTD, offering a flexible and scalable solution for challenging space imaging tasks. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

26 pages, 2335 KiB  
Article
Noisy Remote Sensing Scene Classification via Progressive Learning Based on Multiscale Information Exploration
by Xu Tang, Ruiqi Du, Jingjing Ma and Xiangrong Zhang
Remote Sens. 2023, 15(24), 5706; https://doi.org/10.3390/rs15245706 - 12 Dec 2023
Cited by 5 | Viewed by 1826
Abstract
Remote sensing (RS) scene classification has always attracted much attention as an elemental and hot topic in the RS community. In recent years, many methods using convolutional neural networks (CNNs) and other advanced machine-learning techniques have been proposed. Their performance is excellent; however, [...] Read more.
Remote sensing (RS) scene classification has always attracted much attention as an elemental and hot topic in the RS community. In recent years, many methods using convolutional neural networks (CNNs) and other advanced machine-learning techniques have been proposed. Their performance is excellent; however, they are disabled when there are noisy labels (i.e., RS scenes with incorrect labels), which is inevitable and common in practice. To address this problem, some specific RS classification models have been developed. Although feasible, their behavior is still limited by the complex contents of RS scenes, excessive noise filtering schemes, and intricate noise-tolerant learning strategies. To further enhance the RS classification results under the noisy scenario and overcome the above limitations, in this paper we propose a multiscale information exploration network (MIEN) and a progressive learning algorithm (PLA). MIEN involves two identical sub-networks whose goals are completing the classification and recognizing possible noisy RS scenes. In addition, we develop a transformer-assistive multiscale fusion module (TAMSFM) to enhance MIEN’s behavior in exploring the local, global, and multiscale contents within RS scenes. PLA encompasses a dual-view negative-learning (DNL) stage, an adaptively positive-learning (APL) stage, and an exhaustive soft-label-learning (ESL) stage. Their aim is to learn the relationships between RS scenes and irrelevant semantics, model the links between clean RS scenes and their labels, and generate reliable pseudo-labels. This way, MIEN can be thoroughly trained under the noisy scenario. We simulate noisy scenarios and conduct extensive experiments using three public RS scene data sets. The positive experimental results demonstrate that our MIEN and PLA can fully understand RS scenes and resist the negative influence of noisy samples. Full article
Show Figures

Graphical abstract

Back to TopTop