Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = actinides recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12127 KiB  
Review
Review on Synthesis of Silica-Based Hybrid Sorbents and Their Application in Radionuclide Separation and Removal via Chromatographic Technique
by Xiangbiao Yin, Fan Wang, Qi Zheng, Shunyan Ning, Lifeng Chen and Yuezhou Wei
Toxics 2025, 13(4), 319; https://doi.org/10.3390/toxics13040319 - 19 Apr 2025
Viewed by 498
Abstract
The efficient separation and removal of key nuclides is important for the nuclear fuel cycle from the aspects of radioactivity reduction and potential resource recycling. The urgent objective is to design and develop functional materials for the separation and removal of important nuclides. [...] Read more.
The efficient separation and removal of key nuclides is important for the nuclear fuel cycle from the aspects of radioactivity reduction and potential resource recycling. The urgent objective is to design and develop functional materials for the separation and removal of important nuclides. Porous silicon-based adsorbents are considered highly advantageous materials for separating and removing radioactive nuclides in complex environments due to their excellent mechanical properties, high porosity, and functionalization ability. In this review, we compiled the applications of porous silica-based materials in recent years in the separation and removal of key nuclides, such as actinides, lanthanides, strontium, cesium, iodine, and platinum group metals; discussed their separation and removal performances; analyzed the constitutive relationship between key radionuclides and porous silica-based adsorbents; and systematically described the properties and mechanisms of different types of porous silica-based adsorbents. This article aims to provide some ideas for the design of an advanced separation process in the nuclear fuel cycle. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

16 pages, 4924 KiB  
Article
Recovery of Rare Earth Elements from Coal Fly Ash with Betainium Bis(trifluoromethylsulfonyl)imide: Different Ash Types and Broad Elemental Survey
by Ting Liu, James C. Hower and Ching-Hua Huang
Minerals 2023, 13(7), 952; https://doi.org/10.3390/min13070952 - 17 Jul 2023
Cited by 11 | Viewed by 3141
Abstract
Previously, proof-of-concept studies have demonstrated that rare-earth elements (REEs) can be preferentially extracted from coal fly ash (CFA) solids using a recyclable ionic liquid (IL), betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]). When the suspension of aqueous solution—IL-CFA—is heated above 65 °C, the majority of [...] Read more.
Previously, proof-of-concept studies have demonstrated that rare-earth elements (REEs) can be preferentially extracted from coal fly ash (CFA) solids using a recyclable ionic liquid (IL), betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]). When the suspension of aqueous solution—IL-CFA—is heated above 65 °C, the majority of REEs will separate from the bulk elements in the solids and partition to the IL phase. Acid stripping of the IL removes REEs and regenerates the IL for reuse in additional extraction cycles. The objective of this study is to showcase the applicability and effectiveness of the optimized method to recover REEs from various CFAs. Six CFA samples with different characteristics (feed coal basins, coal beds, and ash collecting points) and classifications (Class C and Class F) were examined. The process performance was evaluated for a broad range of elements (33 total), including 15 REEs, two actinides, six bulk elements, and 10 trace metals. Results confirmed good recovery of total REEs (ranging from 44% to 66% among the CFA samples) and the recovery process’ high selectivity of REEs over other bulk and trace elements. Sc, Y, Nd, Sm, Gd, Dy, and Yb consistently showed high leaching and partitioning into the IL phase, with an average recovery efficiency ranging from 53.8% to 66.2%, while the other REEs showed greater variability among the different CFA samples. Some amounts of Al and Th were co-extracted into the IL phase, while Fe co-extraction was successfully limited by chloride complexation and ascorbic acid reduction. These results indicated that the IL-based REE-CFA recovery method can maintain a high REE recovery efficiency across various types of CFA, therefore providing a promising sustainable REE recovery strategy for various coal ash wastes. Full article
(This article belongs to the Special Issue Recovery of Rare Earth Elements (REEs) from Coal Ash)
Show Figures

Figure 1

10 pages, 1700 KiB  
Article
Neptunyl(VI) Nitrate Coordination Polymer with Bis(2-pyrrolidone) Linkers Highlighting Crystallographic Analogy and Solubility Difference in Actinyl(VI) Nitrates
by Tomoyuki Takeyama, Juliane März, Ryoma Ono, Satoru Tsushima and Koichiro Takao
Inorganics 2023, 11(3), 104; https://doi.org/10.3390/inorganics11030104 - 1 Mar 2023
Cited by 1 | Viewed by 2295
Abstract
NpO2(NO3)2 units are connected by bis(2-pyrrolidone) linker molecules with the trans-1,4-cyclohexyl bridging part (L1) to form a one-dimensional coordination polymer, [NpO2(NO3)2(L1)]n. Molecular and crystal structures [...] Read more.
NpO2(NO3)2 units are connected by bis(2-pyrrolidone) linker molecules with the trans-1,4-cyclohexyl bridging part (L1) to form a one-dimensional coordination polymer, [NpO2(NO3)2(L1)]n. Molecular and crystal structures of this compound are nearly identical to that of the UO22+ analogue, while its aqueous solubility is greatly enhanced, probably owing to weaker thermodynamic stability of the complexation in NpO22+ compared with that in UO22+. Full article
(This article belongs to the Special Issue Inorganics: 10th Anniversary)
Show Figures

Graphical abstract

15 pages, 1129 KiB  
Article
Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management
by Alistair F. Holdsworth, Harry Eccles, Clint A. Sharrad and Kathryn George
Waste 2023, 1(1), 249-263; https://doi.org/10.3390/waste1010016 - 15 Jan 2023
Cited by 23 | Viewed by 7489
Abstract
Nuclear fuel is both the densest form of energy in its virgin state and, once used, one of the most hazardous materials known to humankind. Though commonly viewed as a waste—with over 300,000 tons stored worldwide and an additional 7–11,000 tons accumulating annually—spent [...] Read more.
Nuclear fuel is both the densest form of energy in its virgin state and, once used, one of the most hazardous materials known to humankind. Though commonly viewed as a waste—with over 300,000 tons stored worldwide and an additional 7–11,000 tons accumulating annually—spent nuclear fuel (SNF) represents a significant potential source of scarce, valuable strategic materials. Beyond the major (U and Pu) and minor (Np, Am, and Cm) actinides, which can be used to generate further energy, resources including the rare earth elements (Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, and Tb), platinum group metals, (Ru, Rh, Pd, and Ag), noble gases (He, Kr, and Xe), and a range of isotopes useful for medical and energy generation purposes are also produced during fission. One reason for the accumulation of so much SNF is the low uptake of SNF recycle (or reprocessing), primarily due to the high capital and operational costs alongside concerns regarding proliferation and wastes generated. This study will highlight the predominantly overlooked potential for the recovery of strategic materials from SNF, which may offset costs and facilitate advanced waste management techniques for minimised waste volumes, thus increasing the sustainability of the nuclear fuel cycle on the path towards Net Zero. Potential challenges in the implementation of this concept will also be identified. Full article
Show Figures

Figure 1

12 pages, 2088 KiB  
Article
Short Alternative Route for Nuclear Fuel Reprocessing Based on Organic Phase Self-Splitting
by Julie Durain, Damien Bourgeois, Murielle Bertrand and Daniel Meyer
Molecules 2021, 26(20), 6234; https://doi.org/10.3390/molecules26206234 - 15 Oct 2021
Cited by 3 | Viewed by 2430
Abstract
A more sustainable management of natural resources and the establishment of processes allowing a joint management of nuclear materials to avoid their diversion from their civilian use are two issues for the nuclear industry. Short alternatives to existing processes have therefore been proposed [...] Read more.
A more sustainable management of natural resources and the establishment of processes allowing a joint management of nuclear materials to avoid their diversion from their civilian use are two issues for the nuclear industry. Short alternatives to existing processes have therefore been proposed based on known systems available, tributylphosphate (TBP), for the separation of actinides by liquid/liquid extraction. Proof of concept of such alternative has been established on the uranium(VI)/thorium(IV) system. From an organic phase consisting of a mixture of TBP/n-dodecane loaded with uranium and thorium, two fluxes have been obtained: the first contains almost all of the thorium in the presence of uranium in a controlled ratio, the second contains surplus uranium. Two levers were selected to control the spontaneous separation of the organic phase: the addition of concentrated nitric acid, or the temperature variation. Best results have been obtained using a temperature drop in the liquid/liquid extraction process, and variations in process conditions have been studied. Final metal recovery and solvent recycling have also been demonstrated, opening the door for further process development. Full article
(This article belongs to the Special Issue Sustainable Chemistry in France)
Show Figures

Figure 1

19 pages, 5115 KiB  
Article
Assessment of the Anticipated Environmental Footprint of Future Nuclear Energy Systems. Evidence of the Beneficial Effect of Extensive Recycling
by Jérôme Serp, Christophe Poinssot and Stéphane Bourg
Energies 2017, 10(9), 1445; https://doi.org/10.3390/en10091445 - 19 Sep 2017
Cited by 46 | Viewed by 8572
Abstract
In this early 21st century, our societies have to face a tremendous and increasing energy need while mitigating the global climate change and preserving the environment. Addressing this challenge requires an energy transition from the current fossil energy-based system to a carbon-free energy [...] Read more.
In this early 21st century, our societies have to face a tremendous and increasing energy need while mitigating the global climate change and preserving the environment. Addressing this challenge requires an energy transition from the current fossil energy-based system to a carbon-free energy production system, based on a relevant energy mix combining renewables and nuclear energy. However, such an energy transition will only occur if it is accepted by the population. Powerful and reliable tools, such as life cycle assessments (LCA), aiming at assessing the respective merits of the different energy mix for most of the environmental impact indicators are therefore mandatory for supporting a risk-informed decision-process at the societal level. Before studying the deployment of a given energy mix, a prerequisite is to perform LCAs on each of the components of the mix. This paper addresses two potential nuclear energy components: a nuclear fuel cycle based on the Generation III European Pressurized Reactors (EPR) and a nuclear fuel cycle based on the Generation IV Sodium Fast Reactors (SFR). The basis of this study relies on the previous work done on the current French nuclear fuel cycle using the bespoke NELCAS tool specifically developed for studying nuclear fuel cycle environmental impacts. Our study highlights that the EPR already brings a limited improvement to the current fuel cycle thanks to a higher efficiency of the energy transformation and a higher burn-up of the nuclear fuel (−20% on most of the chosen indicators) whereas the introduction of the GEN IV fast reactors will bring a significant breakthrough by suppressing the current front-end of the fuel cycle thanks to the use of depleted uranium instead of natural enriched uranium (this leads to a decrease of the impact from 17% on water consumption and withdrawal and up to 96% on SOx emissions). The specific case of the radioactive waste is also studied, showing that only the partitioning and transmutation of the americium in the blanket fuel of the SFR can reduce the footprint of the geological disposal (saving up to a factor of 7 on the total repository volume). Having now at disposition five models (open fuel cycle, current French twice through fuel cycle, EPR twice through fuel cycle, multi-recycling SFR fuel cycle and at a longer term, multi-recycling SFR fuel cycle including americium transmutation), it is possible to model the environmental impact of any fuel cycle combining these technologies. In the next step, these models will be combined with those of other carbon-free energies (wind, solar, biomass…) in order to estimate the environmental impact of future energy mixes and also to analyze the impact on the way these scenarios are deployed (transition pathways). Full article
Show Figures

Figure 1

48 pages, 2073 KiB  
Review
Metal Complexes Containing Natural and Artificial Radioactive Elements and Their Applications
by Oxana V. Kharissova, Miguel A. Méndez-Rojas, Boris I. Kharisov, Ubaldo Ortiz Méndez and Perla Elizondo Martínez
Molecules 2014, 19(8), 10755-10802; https://doi.org/10.3390/molecules190810755 - 24 Jul 2014
Cited by 16 | Viewed by 12554
Abstract
Recent advances (during the 2007–2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes [...] Read more.
Recent advances (during the 2007–2014 period) in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium), are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m (99mTc) for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described. Full article
(This article belongs to the Special Issue Practical Applications of Metal Complexes)
Show Figures

Figure 1

Back to TopTop