Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = acetyl triethyl citrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1965 KiB  
Article
Complexation of Boronic Acid with Chiral α-Hydroxycarboxylic Acids and the Ability of the Complexes to Catalyze α-Hydroxycarboxylic Acid Esterification
by Zhonglei Meng, Rongxiu Qin, Rusi Wen, Junkang Xie, Haiyan Chen and Guiqing Li
Molecules 2024, 29(1), 43; https://doi.org/10.3390/molecules29010043 - 20 Dec 2023
Cited by 1 | Viewed by 1425
Abstract
The complexation of boric acid (BA) with various α-hydroxycarboxylic acids (HCAs) was examined by analyzing the change in the optical rotation after the addition of BA to aqueous HCA solutions, and the catalytic properties of the complexes were examined by catalyzing the esterification [...] Read more.
The complexation of boric acid (BA) with various α-hydroxycarboxylic acids (HCAs) was examined by analyzing the change in the optical rotation after the addition of BA to aqueous HCA solutions, and the catalytic properties of the complexes were examined by catalyzing the esterification of the HCAs. The absolute values of the optical rotation of the HCAs increased with increasing BA-to-HCA molar ratio, and the rate of change of the optical rotation gradually decreased as the BA-to-HCA molar ratio increased, reaching a minimum value at a molar ratio of approximately three. As a catalyst, BA could catalyze the acetylation of hydroxyl groups in addition to the esterification of HCAs. Compared to the conventional synthesis routes of ATBC and ATOC, a synthesis route with BA as the catalyst allowed for a lower frequency of catalyst separation and replacement while providing light-colored products. BA could catalyze the formation of triethyl citrate, and the yield of triethyl citrate reached 93.8%. BA could also catalyze the reaction between malic acid and pinene to produce borneol malate. After saponification of borneol malate, borneol was obtained with a yield of 39%. Full article
Show Figures

Figure 1

13 pages, 1955 KiB  
Article
Pharmacokinetics and Metabolism of Acetyl Triethyl Citrate, a Water-Soluble Plasticizer for Pharmaceutical Polymers in Rats
by Hyeon Kim, Young Seok Ji, Shaheed Ur Rehman, Min Sun Choi, Myung Chan Gye and Hye Hyun Yoo
Pharmaceutics 2019, 11(4), 162; https://doi.org/10.3390/pharmaceutics11040162 - 3 Apr 2019
Cited by 13 | Viewed by 4810
Abstract
Acetyl triethyl citrate (ATEC) is a water-soluble plasticizer used in pharmaceutical plasticized polymers. In this study, the pharmacokinetics and metabolism of ATEC were investigated using liquid chromatography–tandem mass spectrometry (LC–MS/MS) in rats. Plasma protein precipitation with methanol was used for sample preparation. For [...] Read more.
Acetyl triethyl citrate (ATEC) is a water-soluble plasticizer used in pharmaceutical plasticized polymers. In this study, the pharmacokinetics and metabolism of ATEC were investigated using liquid chromatography–tandem mass spectrometry (LC–MS/MS) in rats. Plasma protein precipitation with methanol was used for sample preparation. For chromatographic separation, a C18 column was used. The mobile phases consisted of 0.1% formic acid and 90% acetonitrile, and gradient elution was used. The following precursor-product ion pairs were selected for reaction monitoring analysis: 319.1 m/z → 157 m/z for ATEC and 361.2 m/z → 185.1 m/z for tributyl citrate (internal standard) in positive ion mode. The LC–MS/MS method was fully validated and successfully applied to a pharmacokinetic study of ATEC in rats. The pharmacokinetic study showed that the volume of distribution and mean residence time of ATEC were higher after oral administration than after intravenous administration, pointing to extensive first-pass metabolism and distribution in tissue. In addition, the plasma concentration profile of the postulated metabolites of ATEC was investigated in plasma, urine, and feces. The resulting data indicated that ATEC was extensively metabolized and excreted mainly as metabolites rather than as the parent form. The developed analytical method and the data on the pharmacokinetics and metabolism of ATEC may be useful for understanding the safety and toxicity of ATEC. Full article
Show Figures

Graphical abstract

14 pages, 3973 KiB  
Article
Highly Selective Catalytic Properties of HZSM-5 Zeolite in the Synthesis of Acetyl Triethyl Citrate by the Acetylation of Triethyl Citrate with Acetic Anhydride
by Kyong-Hwan Chung, Sangmin Jeong, Hangun Kim, Sun-Jae Kim, Young-Kwon Park and Sang-Chul Jung
Catalysts 2017, 7(11), 321; https://doi.org/10.3390/catal7110321 - 30 Oct 2017
Cited by 12 | Viewed by 7235
Abstract
The catalytic activities of acid catalysts for the acetylation of triethyl citrate with acetic anhydride in the preparation of acetyl triethyl citrate were evaluated. Microporous zeolites such as HZSM-5 and HY zeolites catalysts were introduced as heterogeneous acid catalysts. HZSM-5 zeolite catalysts showed [...] Read more.
The catalytic activities of acid catalysts for the acetylation of triethyl citrate with acetic anhydride in the preparation of acetyl triethyl citrate were evaluated. Microporous zeolites such as HZSM-5 and HY zeolites catalysts were introduced as heterogeneous acid catalysts. HZSM-5 zeolite catalysts showed a high conversion of triethyl citrate and excellent selectivity of acetyl triethyl citrate. The catalytic activities of HZSM-5 zeolites were superior to those of the HY zeolites. In particular, the selectivity of acetyl triethyl citrate on HZSM-5 zeolites exceeded 95%. The moderate acid strength of HZSM-5 (Si/Al = 75) zeolite led to the highest catalytic activities among the HZSM-5 zeolite catalysts, which have various acid strengths. Full article
(This article belongs to the Special Issue Zeolites and Catalysis)
Show Figures

Graphical abstract

Back to TopTop