Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Zn-saponite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 822 KiB  
Article
Unlocking the Saponite Potential in Aided Phytostabilisation of Multi-Metal-Contaminated Soils
by Barbara Klik, Martin Brtnicky, Iwona Jaskulska, Mariusz Zygmunt Gusiatin, Dariusz Jaskulski, Jiri Holatko, Tivadar Baltazar, Ernesta Liniauskiene and Maja Radziemska
Minerals 2023, 13(11), 1354; https://doi.org/10.3390/min13111354 - 24 Oct 2023
Cited by 1 | Viewed by 1418
Abstract
Human activities have significantly impacted the environment, resulting in a need to restore degraded areas through various remediation techniques. This study aimed to evaluate the effectiveness of saponite in the aided phytostabilisation technique for heavy-metal-contaminated soil. The research was conducted on soil from [...] Read more.
Human activities have significantly impacted the environment, resulting in a need to restore degraded areas through various remediation techniques. This study aimed to evaluate the effectiveness of saponite in the aided phytostabilisation technique for heavy-metal-contaminated soil. The research was conducted on soil from a post-industrial site characterised by high metal content (Cu, Ni, Cd, Pb, Zn, and Cr) surpassing the established regulatory limits. Saponite was added to the contaminated soil at a ratio of 3% (w/w). The experiment was performed using Lolium perenne L. and Festuca rubra L. due to their adaptability to harsh soil conditions and rapid growth. The results demonstrated that saponite application significantly increased soil pH, which is beneficial for phytostabilisation of heavy metals. Saponite has been found to selectively enhance Ni accumulation in roots while not affecting Pb accumulation in above-ground parts, implying that saponite can effectively regulate heavy metal accumulation in plant biomass. Furthermore, saponite has been observed to significantly decrease soil Cd, Zn, and Cr levels with no impact on Cu, Ni, and Pb levels. Overall, saponite shows promise as an effective and scalable solution for large-scale phytostabilisation projects, contributing to the restoration of degraded soils and the protection of environmental and human health. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

32 pages, 3953 KiB  
Review
Urea-Assisted Synthesis and Characterization of Saponite with Different Octahedral (Mg, Zn, Ni, Co) and Tetrahedral Metals (Al, Ga, B), a Review
by Concepcion P. Ponce and J. Theo Kloprogge
Life 2020, 10(9), 168; https://doi.org/10.3390/life10090168 - 28 Aug 2020
Cited by 19 | Viewed by 4307
Abstract
Clay minerals surfaces potentially play a role in prebiotic synthesis through adsorption of organic monomers that give rise to highly concentrated systems; facilitate condensation and polymerization reactions, protection of early biomolecules from hydrolysis and photolysis, and surface-templating for specific adsorption and synthesis of [...] Read more.
Clay minerals surfaces potentially play a role in prebiotic synthesis through adsorption of organic monomers that give rise to highly concentrated systems; facilitate condensation and polymerization reactions, protection of early biomolecules from hydrolysis and photolysis, and surface-templating for specific adsorption and synthesis of organic molecules. This review presents processes of clay formation using saponite as a model clay mineral, since it has been shown to catalyze organic reactions, is easy to synthesize in large and pure form, and has tunable properties. In particular, a method involving urea is presented as a reasonable analog of natural processes. The method involves a two-step process: (1) formation of the precursor aluminosilicate gel and (2) hydrolysis of a divalent metal (Mg, Ni, Co, and Zn) by the slow release of ammonia from urea decomposition. The aluminosilicate gels in the first step forms a 4-fold-coordinated Al3+ similar to what is found in nature such as in volcanic glass. The use of urea, a compound figuring in many prebiotic model reactions, circumvents the formation of undesirable brucite, Mg(OH)2, in the final product, by slowly releasing ammonia thereby controlling the hydrolysis of magnesium. In addition, the substitution of B and Ga for Si and Al in saponite is also described. The saponite products from this urea-assisted synthesis were tested as catalysts for several organic reactions, including Friedel–Crafts alkylation, cracking, and isomerization reactions. Full article
(This article belongs to the Special Issue Clays and the Origin of Life)
Show Figures

Graphical abstract

9 pages, 1521 KiB  
Article
Synthesis of Zn-Saponite Using a Microwave Circulating Reflux Method under Atmospheric Pressure
by Bing-Sheng Yu, Wei-Hsiang Hung, Jiann-Neng Fang and Yu-Ting Yu
Minerals 2020, 10(1), 45; https://doi.org/10.3390/min10010045 - 1 Jan 2020
Cited by 4 | Viewed by 3084
Abstract
Smectite is a common clay mineral in nature. Due to its tendency to swell and its strong cation exchange capacity (CEC), smectite is prevalently used in industrial and technological applications. Numerous scholars have explored smectite synthesis, which usually involves autoclaving under high pressure. [...] Read more.
Smectite is a common clay mineral in nature. Due to its tendency to swell and its strong cation exchange capacity (CEC), smectite is prevalently used in industrial and technological applications. Numerous scholars have explored smectite synthesis, which usually involves autoclaving under high pressure. However, this approach requires an array of expensive equipment, and the process consumes time and energy. This study adopted self-developed equipment to synthesize zinc saponite (Zn-saponite), a type of trioctahedral smectite, using a microwave circulating reflux method under atmospheric pressure. Compared with the conventional hydrothermal methods, the proposed method entails fewer constraints regarding the synthesis environment and can be more easily applied to large-scale synthesis. The phase purity of the synthetic product was examined using X-ray diffraction and the CEC of the product was tested. The results revealed that the microwave circulating reflux method could synthesize Zn-saponite in 16 h under atmospheric pressure, and the CEC of the product reached 120 cmol(+)/kg. In addition, the product exhibited larger basal spacing and a 32% increase in CEC compared with Zn-saponite synthesized using a hot-plate under atmospheric pressure. Full article
Show Figures

Figure 1

Back to TopTop