Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Zn-Co-S/graphene nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 23422 KiB  
Article
Broad-Spectrum Antimicrobial ZnMintPc Encapsulated in Magnetic-Nanocomposites with Graphene Oxide/MWCNTs Based on Bimodal Action of Photodynamic and Photothermal Effects
by Coralia Fabiola Cuadrado, Antonio Díaz-Barrios, Kleber Orlando Campaña, Eric Cardona Romani, Francisco Quiroz, Stefania Nardecchia, Alexis Debut, Karla Vizuete, Dario Niebieskikwiat, Camilo Ernesto Ávila, Mateo Alejandro Salazar, Cristina Garzón-Romero, Ailín Blasco-Zúñiga, Miryan Rosita Rivera and María Paulina Romero
Pharmaceutics 2022, 14(4), 705; https://doi.org/10.3390/pharmaceutics14040705 - 26 Mar 2022
Cited by 17 | Viewed by 4720
Abstract
Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) [...] Read more.
Microbial diseases have been declared one of the main threats to humanity, which is why, in recent years, great interest has been generated in the development of nanocomposites with antimicrobial capacity. The present work studied two magnetic nanocomposites based on graphene oxide (GO) and multiwall carbon nanotubes (MWCNTs). The synthesis of these magnetic nanocomposites consisted of three phases: first, the synthesis of iron magnetic nanoparticles (MNPs), second, the adsorption of the photosensitizer menthol-Zinc phthalocyanine (ZnMintPc) into MWCNTs and GO, and the third phase, encapsulation in poly (N-vinylcaprolactam-co-poly(ethylene glycol diacrylate)) poly (VCL-co-PEGDA) polymer VCL/PEGDA a biocompatible hydrogel, to obtain the magnetic nanocomposites VCL/PEGDA-MNPs-MWCNTs-ZnMintPc and VCL/PEGDA-MNPs-GO-ZnMintPc. In vitro studies were carried out using Escherichia coli and Staphylococcus aureus bacteria and the Candida albicans yeast based on the Photodynamic/Photothermal (PTT/PDT) effect. This research describes the nanocomposites’ optical, morphological, magnetic, and photophysical characteristics and their application as antimicrobial agents. The antimicrobial effect of magnetics nanocomposites was evaluated based on the PDT/PTT effect. For this purpose, doses of 65 mW·cm−2 with 630 nm light were used. The VCL/PEGDA-MNPs-GO-ZnMintPc nanocomposite eliminated E. coli and S. aureus colonies, while the VCL/PEGDA-MNPs-MWCNTs-ZnMintPc nanocomposite was able to kill the three types of microorganisms. Consequently, the latter is considered a broad-spectrum antimicrobial agent in PDT and PTT. Full article
Show Figures

Graphical abstract

11 pages, 2813 KiB  
Article
Construction of a Label-Free Electrochemical Immunosensor Based on Zn-Co-S/Graphene Nanocomposites for Carbohydrate Antigen 19-9 Detection
by Chia-Wei Su, Jia-Hao Tian, Jin-Jia Ye, Han-Wei Chang and Yu-Chen Tsai
Nanomaterials 2021, 11(6), 1475; https://doi.org/10.3390/nano11061475 - 2 Jun 2021
Cited by 25 | Viewed by 3376
Abstract
Nanocomposites of the binary transition metal sulfide Zn-Co-S/graphene (Zn-Co-S@G) were synthesized through a one-step hydrothermal method. They may be useful in the construction of an electrochemical immunosensor for carbohydrate antigen 19-9 (CA19-9) detection. Zn-Co-S dot-like nanoparticles uniformly covered the surface of graphene to [...] Read more.
Nanocomposites of the binary transition metal sulfide Zn-Co-S/graphene (Zn-Co-S@G) were synthesized through a one-step hydrothermal method. They may be useful in the construction of an electrochemical immunosensor for carbohydrate antigen 19-9 (CA19-9) detection. Zn-Co-S dot-like nanoparticles uniformly covered the surface of graphene to form an interconnected conductive network, ensuring strong interaction between transition metal sulfide and graphene, which can expose numerous electroactive sites leading to the improvement of the amplified electrochemical signal toward a direct reduction of H2O2. Thus, the construction of an electrochemical immunosensor using Zn-Co-S@G nanocomposites showed outstanding sensing properties for detecting CA19-9. The constructed electrochemical immunosensor exhibited a good linear relationship in the range of 6.3 U·mL−1–300 U·mL−1, with the limit of detection at 0.82 U·mL−1, which makes it a promising candidate for an electrochemical immunosensor. Full article
(This article belongs to the Special Issue Nanosensors)
Show Figures

Figure 1

22 pages, 7823 KiB  
Article
Complexation-Based Detection of Nickel(II) at a Graphene-Chelate Probe in the Presence of Cobalt and Zinc by Adsorptive Stripping Voltammetry
by Keagan Pokpas, Nazeem Jahed, Priscilla G. Baker and Emmanuel I. Iwuoha
Sensors 2017, 17(8), 1711; https://doi.org/10.3390/s17081711 - 25 Jul 2017
Cited by 41 | Viewed by 8470
Abstract
The adsorptive stripping voltammetric detection of nickel and cobalt in water samples at metal film electrodes has been extensively studied. In this work, a novel, environmentally friendly, metal-free electrochemical probe was constructed for the ultra-trace determination of Ni2+ in water samples by [...] Read more.
The adsorptive stripping voltammetric detection of nickel and cobalt in water samples at metal film electrodes has been extensively studied. In this work, a novel, environmentally friendly, metal-free electrochemical probe was constructed for the ultra-trace determination of Ni2+ in water samples by Adsorptive Cathodic Stripping Voltammetry (AdCSV). The electrochemical platform is based on the adsorptive accumulation of Ni2+ ions directly onto a glassy carbon electrode (GCE) modified with dimethylglyoxime (DMG) as chelating agent and a Nafion-graphene (NGr) nanocomposite to enhance electrode sensitivity. The nafion-graphene dimethylglyoxime modified glassy carbon electrode (NGr-DMG-GCE) shows superior detection capabilities as a result of the improved surface-area-to-volume ratio and enhanced electron transfer kinetics following the incorporation of single layer graphene, while limiting the toxic effects of the sensor by removal of the more common mercury, bismuth and lead films. Furthermore, for the first time the NGr-DMG-GCE, in the presence of common interfering metal ions of Co2+ and Zn2+ demonstrates good selectivity and preferential binding towards the detection of Ni2+ in water samples. Structural and morphological characterisation of the synthesised single layer graphene sheets was conducted by Raman spectrometry, HRTEM and HRSEM analysis. The instrumental parameters associated with the electrochemical response, including accumulation potential and accumulation time were investigated and optimised in addition to the influence of DMG and graphene concentrations. The NGr-DMG-GCE demonstrated well resolved, reproducible peaks, with RSD (%) below 5% and a detection limit of 1.5 µg L−1 for Ni2+ reduction at an accumulation time of 120 s., the prepared electrochemical sensor exhibited good detection and quantitation towards Ni2+ detection in tap water samples, well below 0.1 mg L−1 set by the WHO and EPA standards. This comparable to the South African drinking water guidelines of 0.15 mg L−1. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

Back to TopTop