Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Zaremba relativity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1681 KiB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 340
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

22 pages, 429 KiB  
Article
Duhem and Natanson: Two Mathematical Approaches to Thermodynamics
by Janusz Badur, Michel Feidt and Paweł Ziółkowski
Energies 2022, 15(5), 1881; https://doi.org/10.3390/en15051881 - 3 Mar 2022
Viewed by 2224
Abstract
In this article, the previously unrecognized contributions of Pierre Duhem and Ladislavus Natanson in thermodynamics are shown. The mathematical remodelling of a few of their principal ideas is taken into consideration, despite being neglected in the literature. To emphasize these ideas in an [...] Read more.
In this article, the previously unrecognized contributions of Pierre Duhem and Ladislavus Natanson in thermodynamics are shown. The mathematical remodelling of a few of their principal ideas is taken into consideration, despite being neglected in the literature. To emphasize these ideas in an appropriate epistemological order, it would be crucial to first revalue and reconstruct some underrepresented parts of the proceedings process through which Duhem and Natanson created their thermodynamics. Duhem and Natanson’s scientific works are against the background of modern continuum mechanics, presenting relevant approaches. In line with the long-held beliefs of many French and Polish researchers, the article mentions that Duhem and Natanson’s ideas dated back to one century ago. Both scientists were qualified in the same Royal Way, which in this case includes chemistry, mechanic of fluid and solid, electro-chemistry, thermodynamics, electrodynamics, and relativistic and quantum mechanics. Therefore, it is possible to connect and then compare the results of their conceptions and approaches. Duhem and Natanson are both in firm opposition with Newtonian mechanisms. Thus, the Maupertuis least action principle created the ground for their efforts, in which they flourished as an elementary quantum. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Back to TopTop