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Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
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Abstract: In this article, the previously unrecognized contributions of Pierre Duhem and Ladislavus
Natanson in thermodynamics are shown. The mathematical remodelling of a few of their principal
ideas is taken into consideration, despite being neglected in the literature. To emphasize these ideas
in an appropriate epistemological order, it would be crucial to first revalue and reconstruct some
underrepresented parts of the proceedings process through which Duhem and Natanson created
their thermodynamics. Duhem and Natanson’s scientific works are against the background of
modern continuum mechanics, presenting relevant approaches. In line with the long-held beliefs of
many French and Polish researchers, the article mentions that Duhem and Natanson’s ideas dated
back to one century ago. Both scientists were qualified in the same Royal Way, which in this case
includes chemistry, mechanic of fluid and solid, electro-chemistry, thermodynamics, electrodynamics,
and relativistic and quantum mechanics. Therefore, it is possible to connect and then compare the
results of their conceptions and approaches. Duhem and Natanson are both in firm opposition with
Newtonian mechanisms. Thus, the Maupertuis least action principle created the ground for their
efforts, in which they flourished as an elementary quantum.

Keywords: thermo-chemistry thermodynamics of hidden parameters; Duhem inequality; Natanson’s
fundamental equation; non-linear evolution equations; logical structure of the extended thermo-
dynamics; Maxwell−Natanson un-objectivity; Zaremba relativity; co-rotational time derivative;
objective thermodynamics; nonlocal thermodynamics of Navier−Stokes−Fourier fluid

1. Introduction

Cimmelli, Jou, Rugerri, and Ván [1] recently elaborated concise versions of the modern
mathematical methods used in thermodynamics. To do this, they surveyed numerous
results from classical, irreversible, extended, and statistical thermodynamics in order to
obtain a summary of the current methods and their usefulness as scientific tools. Here, we
take a similar approach, but instead outline the state of thermodynamics at the end of the
19th century. We begin by introducing the state-of-art for the period of 1870–1880, before
describing the thermodynamic models developed by Duhem and Natanson.

Here, we aimed to reconstruct and revalorize two extremely abstract, potential-based
thermodynamic models that were created simultaneously by two independent scientists:
Pierre Duhem (Lille, Bordeaux, and Toulouse) and Ladislavus Natanson (Cracow). We
specifically wanted to show the important developments that were made during the last
decades of the 19th century, and restrict oversells to some selected not yet published mathe-
matical ideas devoted to Duhem and Natanson [2–5]. Thus, we could rediscover an original
construction of a very general approach, which started from the established unification
of thermodynamics and mechanics. Sometimes we present the original results without
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explanation of the original symbols in the equation, if nowadays those are well-known.
The authors would like to mention that a historical reorganization of the theoretical ther-
modynamics in the second half of the 19th century was given by S. Bordoni [6]. Natanson
and Duhem belong to that historical context, and Duhem has been widely analyzed in
this paper.

Stefano Bordoni recently proposed [6] a finer arrangement would demand at least
five branches, which can be divided concerning their conceptual distance from mechanics,
as follows:

1 an entirely phenomenological approach, in which thermodynamics counted on its
own filars;

2 the energetism approach, in which a science of energy is implemented into thermodynamics;
3 a macroscopic approach, which appears as a structural analogy with analytical mechanics;
4 the consolidation of macroscopic and microscopic approaches, where thermodynamics

relies on a similar analogy;
5 the last branch—a microscopic one—is based on specific mechanical approaches of

forces and/or collisions coming from statistical assumptions that are beyond the
tradition of mechanics.

Most would agree that the tradition of classical field theory finally began with La-
grange’s Mécanique analytique. Similarly, we agree that Carnot’s roots of rational thermody-
namics also have the same origin. Lazare Carnot’s statement, shared in the form of advice
to his son Sadi, is well-known (this advice was given in Warsaw—one of the countries
where Lazare Carnot had migrated to): “In order to find a base for thermodynamics you
have to prolongate the mathematics of Analytic Mechanics”. Therefore, the overall aim
of Sadi Carnot was to create a science of caloric balance, similar to the established struc-
tures of analytical mechanics. Thus, it is unsurprising that Carnot’s equation of motion of
substantial caloric possesses the same mathematical structures as the balance of entropy.

However, Carnot’s abstractive approach to energy conversion from heating to working
is very mysterious. Truly speaking, Sadi Carnot provided a germ of a mathematical model
that is actually a specific mechanical model, completely hidden in footnotes. This Carnot
approach blossomed slowly over about ten decades across Britain and Europe. Owing to the
efforts of Clapeyron, Lamè, Hoëné-Wroński, Ferdinand Reech, and James Thomson (older
brother of Lord Kelvin), some elements of Carnot’s idea were retained in the foundation
of the Second Law of thermodynamics. Unfortunately, none of the three foundations
of thermodynamic laws (Clausius, Thomson, and Helmholtz) borrowed from Carnot’s
concept of rational thermodynamics.

After the 1850s, some researchers occasionally turned towards rational thermodynam-
ics (e.g., Mikhail Okatov, Francois Massieu, Josiah Willard Gibbs, Franz Neumann, Arthur
von Oettingen, and the young Max Planck). Thus, Pierre Duhem and Ladislavus Natanson
were the first among the chemists to explore the connections between the contents of
thermo-chemistry and the formal structures of analytical mechanics.

Energetism began with William Macquorn Rankine and Ferdinand Reech’s researches
in the mid-19th century. Unfortunately, this science was a kind of reaction to a powerful
paradigm that assumed a mechanical nature of every physical phenomenon. A few scien-
tists were entirely involved in the project of presenting this by transferring physical theory
to the mechanical approach. Both Duhem and Natanson were against a direct interpretation
of the Rankine−Reech approach to a clear and adequate foundation for thermodynamics.
They especially rejected the orthodox vision developed by the German school of ener-
getism. It is important to note that in Germany, the three well-known people, Georg Helm,
Wilhelm Ostwald, and Ernst Mach, had been promoting a theory of energetic affected by
thermodynamics in the last years of the 19th century, with quite different motivations.

In 1911, Duhem [7] directly criticized the understanding of energetism. He disagreed
with Ostwald’s perspective about assuming energy as the only eternal element (also known
as Helm’s phenomenal attitude). Even though Duhem accepted Ostwald and Helm opposi-
tion to reduce all physical phenomena to mechanics, he did not develop his own line of
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reasoning, and never appealed to their writings. However, Mach’s concept of relativity, as
well as his criticism of Newton, were appreciated by both Duhem [8] and Natanson [9].

Based on the atomistic version of nature and the philosophical fundamentals given by
Democritus, Lucretius, and Rudolf Clausius in the middle of 19th century, a new version
of thermodynamics and traditions of research emerged from the kinetic theory of gases.
Other “mechanical theories of heat” were demonstrated at the end of the 19th century, and
the very meaning of the adjective “mechanical” was in doubt. Between 1860 and 1870,
Krönig, Meyer, James Clerk Maxwell, and Ludwig Boltzmann enhanced the synthesis of
the thermodynamics into the kinetic theory of gases.

The concept of irreversibility likely originated from Leonardo da Vinci, who was
the first to make a distinction between the first and second type perpetuum mobile. Un-
fortunately, from the extensive writings about the irreversible phenomena, only a few
concepts have been translated into precise mathematical meaning. In the time of Duhem
and Natanson, irreversibility, relative to reversibility, had a poor mathematical understand-
ing. However, interest in irreversibility was renewed following discoveries by Jaumann,
Lippmann, Eckart, Onsager, Prigogine, Meixner, Reik, Lohr, de Groot, Garmathy, Kluten-
berg, Liukov, Ziegler, Biot, Machlup, and others [10]. With regard to recent trends in the
thermodynamics of irreversible processes of rational thermodynamics, the authors would
like to mention the excellent paper of Ingo Muller and Wolf Weiss [10].

Although extended irreversible thermodynamics formally began with Maxwell’s much
celebrated paper, it was only developed after a resurrection inspired by Ingo Müller’s 1969
dissertation. G. Lebon, David Jou, José Casas-Vázquez, Péter Ván, and Vito Cimmelliand
Tommaso Ruggeri are among the researchers that addressed the various types of extended
thermodynamics [1,11].

The concept of hidden parameters is typically considered to have arisen from the efforts
of pioneers and veterans such as Josef Kestin, Wolfgang Muschik, Miroslav Grmela, Gerard
Maugin, Witold Kosiński, Lilliana Restuccia, and Bogdan Maruszewski. Unfortunately,
authors such as Herman Helmholtz, Edward Routh, Kálmán Szily von Nagy-Szigeth, Hans
Reissner, and Pierre Duhem are rarely recognized [12–14].

Contemporary related literature about internal variables are classified into two groups
according to Maugin and Muschik [12,13]. Internal variables of state with a relaxation
type of evolution are generated by thermodynamics and dynamic degrees of freedom with
variational evolution. The two kinds of evolution are actually the same when one uses dual
internal variables and weakly nonlocal theory [14].

The aim of the article is to show the previously unrecognized contributions of Pierre
Duhem and Ladislavus Natanson in thermodynamics. The mathematical remodeling of
a few of their principal ideas is taken into consideration, despite being neglected in the
literature. To emphasize these ideas in appropriate epistemological order, it would be
crucial to first revalue and reconstruct some underrepresented parts of the proceedings
process through which Duhem and Natanson created their thermodynamics. In Section 2,
the review of Duhem’s work comprises thermodynamic potentials, hidden parameters,
energy balance, nonlocal theories, constitutive relations, and supplementary equations.
Section 3 considers Natanson’s contributions and derivation of balance laws, which have
a striking similarity with approaches nowadays known as extended thermodynamics.
Objectivity of the evolution equations studied by S. Zaremba is discussed in Section 4.
Conclusions and a peculiar recap of the scientific evolution of P. Duhem and L. Natanson
are given in Section 5.

2. Duhem and His Thermodynamics of Hidden Parameters
2.1. Duhem: Thermodynamic Potentials

As many authors have noted [2,6,15], Duhem started with his concept of Le potential
Thermodynamique. His success in discovering the thermodynamic potential for many
phenomena encouraged him to dismantle Berthelot’s thermo-chemistry, which had enjoyed
an unquestionable authority in France. Duhem’s numerous remarks on experimental
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evidence for the third principle of Berthelot’s thermo-chemistry has taken a variety of
forms. Briefly, we now outline Duhem’s original contributions to the following domains:

• capillarity is reconstructed according to Equation (5) in article [16]:

Φ =
p=n

∑
p=1

{
Mp
[
E
(
up − Tsp

)
+ pσp

]
+ ∑

q
Ap,qθp,q

}
, (1)

where M is the mass of component p = 1, . . . , n, E describes the coefficient, up
defines the internal specific energy of component p = 1, . . . , n, T represents the
temperature, sp concerns the specific entropy, p means the pressure, σp characterizes
the specific volume, Ap,q expresses the surface tension, and θp,q shows the surface
between the phases.

• dissociation [17] p. 390:

Φ = µ2θ2(T) + m1ψ1(S, T) + m2ψ2(S, T), (2)

where µ2 means the chemical amount, θ2(T) represents the chemical potential, m1 and m2
are the input and output fluxes (1 and 2, respectively), and ψ1 ψ2 defines the conjugate
thermodynamic forces.

• phase transition is defined according to Equation (55) in article [18]:

Φ = mAFA + mBFB + mCFC + µAΦA(pA, T) + µBΦB(pB, T) + qΘ, (3)

where mA, mB, mC are the mass, FA, FB, FC describe the specific free energy,
ΦA(pA, T) and ΦB(pB, T) characterize the chemical potential, µB, µB express the
number of moles, q concerns the order parameter, and Θ means the square gradi-
ent parameter. Additionally, Duhem’s other original contributions produced different
forms of thermodynamic potential that were discovered and applied. In Duhem’s
equations above, many abstractive denotations appear, like sp , σp , θp,q , µA. Nowa-
days, those symbols, due to their abstractive character, cannot be used as adequate
notions from equilibrium thermodynamics—many concepts of Duhem’s ideas have
been forgotten. Nevertheless, the full reconstruction of the details of potentials given
by Equations (1)–(3) is theoretically possible. For instance, most important is Duhem’s
generalization of the Young−Laplace equation with addition electrical tension which
according to reconstructed Equation (46) in paper [19] is as follows:

(A12 + A21)

[(
1

R1
+

1
R′1

)
+

(
1
ρ1

+
1
ρ2

)]
+ (D1 − D2)g(z− ζ) = −L12(i12 − j12)− L21

(
i212 − j212

)
. (4)

where A12 is the affinity from 1 to 2 and A21 means the affinity from 2 to 1, R1, R′1 are
the radii of the principal curves, ρ1, ρ2 represent the radii of the secondary curves, z, ζ
concerns the level of concentration, g defines the gravity force, D1, D2 is the diffusion
coefficients, i12 is the local current density, j12 is the local components density flux, L12
is the linear coefficient matrix, and L21 is the nonlinear coefficient matrix.

We can see that Duhem presented the general idea of the thermodynamic potential
in a specific sense, as an analogy between certain formulas of mechanics and thermo-
dynamics. His understanding of Reech, Gibbs, Maxwell, and Helmholtz gave him the
ability to see analogies between the concept of potential and the function available energy
termed by Gibbs and W. Thomson, and the free energy named by Helmholtz in a chemical
reaction. Additionally, his idea to treat the theories of thermodynamic statics with meth-
ods very similar in form to those of Lagrange, in mechanical statics was, as seen in the
future, powerful.
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2.2. Duhem: Thermo-Chemistry of Hidden Parameters

In 1890, Duhem began to explore the foundations of thermo-chemistry, and treated it
as an analogy to Lagrange’s analytical mechanics. The results of Duhem’s efforts were pub-
lished in “The Fundamental Equations of Thermodynamics” [20] and were next extended
in Duhem’s three-part study, “Commentary on the Principles of Thermodynamics” [21–23].
Yet, in his 1903 essay, Duhem presented [8] his first rigorous definition of the notion of
a reversible process that was in some aspects analogous to the peripatetic motion. In
chemistry, this reasoning was problematic, because chemical equilibrium reactions have a
form of thermo-statics that provide the characterization of matter at equilibrium.

In the analyses of the chemical reaction process connecting two equilibrium states
that gather equilibrium states, Duhem assumed that, at the limit (nowadays called a quasi-
static process), where the imbalance is step by step decreased, every level is treated as an
equilibrium state. Whereas it indicates that the sum of such levels cannot itself represent a
process, however this phenomenon need to be slow.

Thus, Duhem introduced a concept of a reversible change (transformation réversible),
described by fields of hidden parameters αa. Early in his physical chemistry textbooks, with
this kind of peripatetic motion, he began his analytical description referring to reversible
change (modification réversible), focusing on real changes that are never reversible [7,24].

With hidden parameters, these are related the following conjugate variables in recon-
structed Equation (1) according to paper [20] is as follows:

Aa =
∂F
∂αa

, a = 1, 2, 3, . . . ., n. (5)

where F is a generalized potential of Helmholtz’ type (now known as free energy poten-
tial), which takes part in the evolution equations for hidden parameters in reconstructed
Equation (2) from paper [20] in Duhem notation:{

Ra =
∂Θ
∂αa
− Aa

E
C = ∂F

∂ϑ −
Θ
E .

(6)

where Ra is viscous friction (generalized thermal capacity), C is thermal friction, and E is
the heat equivalent. By this approach, Duhem describes an increment of chemical heat [20],
p. 234, to be:

dQ = −(Radαa + Cdϑ) . (7)

Thus, arriving at constitutive relations for viscous friction (or generalized thermal
capacity), Ra, with an internal chemical dissipation, Θ, and absolute temperature, ϑ in
reconstructed Equation (8) from paper [20]:

Ra =
1
E

F(ϑ)
F̀(ϑ)

(
∂Θ
∂αa
− ∂Aa

∂ϑ

)
. (8)

This thermo-statics chemistry has been further extended in the last thermodynamic
model of Duhem’s book Traite d’energetique ou thermodynamique generale [2]. Unfortunately,
a revalorization of this fundamental book is, presently, beyond our scope, as it should be
considered as an independent work.

2.3. The Vis Viva Integral in Thermodynamics (1898)

The problem of a general condition required for the kinetics of a fluid–solid phase
transition was stated by Gibbs (1877) and Natanson (1896). In his 1898 paper, Pierre
Duhem [25] returned to this problem in a more general fashion, by describing a system
of two chemically reacting flowing bodies [(1) and (2)] in a surface contact whose various
parts are at different absolute temperatures (T1 and T2, respectively). The first part (solid)
is described by the vector of state variables α1

a =
{

α1, β1, . . . λ1}, a = 1, 2, 3, . . . .n1. Duhem
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assumes that if only T1 varies, then α1
a will remain invariable, whereas the different material

elements that consist of part 1 will remain stable.
Similarly, part 2 (fluid) is indicated as having the normal variables α2

b, b = 1, 2, 3, . . . , n2

and temperature T2. Usually, a solid state requires more state variables than a fluid: n1 > n2.
The interphase surface leads to the existence of k bilateral constraints between variables
according to reconstructed Equation (1) from paper [25]:

M(1)r
a δα1

a + M(2)r
b δα2

b, r =′,′′ ,′′′ , . . . , k, (9)

where the constants M(1)r
a and M(2)r

b are functions of the parameters α1
a, α2

b however,
not T1, T2. The form of internal thermodynamic potential according to reconstructed
Equation (2) from paper [25] is as follows:

F = F1
(

α1
a, T1

)
+ F2

(
α2

b, T2

)
+ EΨ

(
α1

a, α2
b

)
, (10)

where F1, F2 are the internal thermodynamic potentials of part 1 and part 2, considered in
isolation, and EΨ is the potential for the interaction between bodies 1 and 2. The conditions
in Equation (9) give the k relations according to reconstructed Equation (3) from paper [25]:

M(1)r
a

.
α

1
a + M(2)r

b
.
α

2
b = 0, (11)

between parameters
.
α

1
a and

.
α

2
b.

Next, Duhem supposed that the system did not have any internal viscosity and friction
(external viscosity), giving the following form of the n1 constitutive equations according to
reconstructed Equation (4) from paper [25]:

A1
a −

∂

∂α1
a

(
F1 + EΨ− T

)
− d

dt
∂T

∂
.
α

1
a

+ Π1r M1r
a = 0 , a = 1, 2, 3, . . . , n1. (12)

For part 1 and according to reconstructed Equation (5) from paper [25]:

A2
b −

∂

∂α2
b

(
F2 + EΨ− T

)
− d

dt
∂T

∂
.
α

2
b

+ Π2r M2r
b = 0, b = 1, 2, 3, . . . , n2, (13)

where T is the vis-viva of the system, and A1
a and A2

b are the total action that the system
exerts upon body 1 and body 2, respectively. The internal reactions Π1r, Π2r depend on α,

.
α,

but not on
..
α. The inertia-less state parameters

..
α was developed in 2001 by Zbigniew Bilicki,

who introduced a “second order in time differential equation on state parameters” [26].
The quantity of the evolution Equations (9), (12) and (13), is

(
k + n1 + n2), however, it

is necessary to define: the n1 variables α1
a, the n2 variables α2

b and the k auxiliary variables
Π1r = −Π2r.

Next, Duhem supposed that the actions A1
a, A2

b, that force the system by the bodies
that are unfamiliar to the system, depend on a potential: Ω

(
α1

a, α2
b
)
. From this position, it is

not difficult to prove that the evolution (Equations (4) and (5)) and constrains (Equation (1))
fulfilled the following principle of energy creating from nothing which is reconstructed
according to Equation (6) from paper [25]:

d
dt

(
Ω + F1 + F2 + EΨ + T

)
− ∂F1

∂T1

dT1

dt
− ∂F2

∂T2

dT2

dt
= 0 (14)

Duhem then provided the statement: In order for the relation (6) to immediately yield a
first integral (viz., a vis viva integral) of the Equations (4) and (5), it is necessary and sufficient that
the expression: ∂F1

∂T1

dT1
dt −

∂F2

∂T2

dT2
dt must represent the total differential of a function of α1

a, T1, α2
b, T2,

either by itself or by virtue of the supplementary condition T1 = T2 = 0.
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Finally, some systems can determine a vis viva integral by virtue of additional relations.
When one is not correlated with an established system, the above formula will no longer be
a total differential. On the other hand, equality of the following form can arise according to
reconstructed Equation (21) from paper [25]:

∂F1

∂T1

dT1

dt
− ∂F2

∂T2

dT2

dt
=

dF(t)
dt

(15)

For this specific example, the system will indicate a vis viva integral, which will have
the expression according to reconstructed Equation (22) from paper [25]:

Ω + F1 + F2 + EΨ + T − F(t) = const (16)

This is a Daniel Bernoulli type vis viva integral in chemical statics. One of the com-
plementary equations (15) implies that each of the constituent parts does not receive or
release heat during any real modification of the system. These are specifically the additional
relations that were stated by Laplace in his work on the propagation of sound in a material
of air. On the other hand, if one admits that every part of the system has an invariable
temperature, whereas the system is being reformulated, then Duhem’s supplementary rela-
tion is reduced to the form: Ω + F1 + F2 + EΨ + T = const. Ω + F1 + F2 + EΨ + T = const,
which will then be in the formula of the vis viva integral for isothermal modifications.
This form of additional relations was eventually formulated by Newton and the geometers
during the decades of the 18th century through the theory of sound.

Ultimately, Duhem underlined the power of thermodynamic principles in the follow-
ing quote: “These considerations show that the questions that relate to thermodynamics
will have to come to the attention of physicists before they can begin the study of systems
other than classical systems, and in fact, it was the theory of the propagation of sound in
air that provoked Laplace to create thermodynamics”.

2.4. Duhem: Thermodynamics of Nonlocal Elastic Fluids

Typically, for French scientists, having little in common with the Newtonian mechanics,
Pierre Duhem started from a variational formulation of the Lagrangean mechanics in the
following exact and general (exacte en général) form, which is reconstructed according
work [27] in issue I in Equation (2) as follows:

Ω + F1 + F2 + EΨ + T − F(t) = const. (17)

Duhem’s aim was to demonstrate the power of variational formulation, therefore, he went
beyond the classical Navier–Stokes model of thermal, conductible, and viscous fluid and
instead considered a fluid, nonlocal in space, based on the nonlocal free energy concept.
Using same line of reasoning, Duhem repeated this for constructing a theory of three-
dimensional elasticity nonlocal in time and nonlocal in space theory [28]. A few years
later, a weekly-nonlocal model with an additional internal degree of freedom developed
using quantum thermodynamics was proposed. Quantum mechanics is considered as
a (strongly) nonlocal theory, at least regarding the role of quantum mechanical hidden
variables. On the other hand, its Schrodinger–Madelung formulation is a weekly nonlocal
fluid theory. However, the theory of Duhem that is presented here is a strongly nonlocal
continuum theory.

In the above Equation (17), Lagrangian’s four contributions to energy are as follows:
n variation of internal potential, which is reconstructed according to work [27] in issue I

in Equation (67):

Ra =
1
E

F(ϑ)
F̀(ϑ)

(
∂Θ
∂αa
− ∂Aa

∂ϑ

)
(18)

where, due to the nonlocal potential (see Equation (34)), it appears as a definition pressure
π and condition from nonlocality A(i), Ac (see Equations (31) and (36)), as well as a con-
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tribution from an internal body force X(i) (see Equation (35)). Equations (31) and (34)–(36)
will be defined in Section 2.4.1. Set of Governing Equations.

n variation of external actions, which is reconstructed according to work [27] in issue I
in Equation (70):

dTc =
∫

ρX(c) · δxdω +
∫

P · δxdS, (19)

n variation of kinetic energy, which is reconstructed according to work [27] in issue I in
Equation (3) as follows:

dTj =
∫

ρa · δxdω, (20)

n variation of viscous power, which is reconstructed according to work [27] in issue I in
Equations (41), (45) and (47) as follows:

dTv =
∫

tr(τ · δe)dω = −
∫

nτ · δxdS +
∫

divτ · δxdω. (21)

Above, Duhem applied the following component notation:
n placement of particle:

x = xex + yey + zez (22)

n body force, which can be reconstructed according to work [27] in issue I in Equation (70)
as follows:

X(c) = Xcex + Ycey + Zcez, (23)

n surface forces, which can be reconstructed according to work [27] in issue I in Equation (70)
as follows:

P = Pxex + Pyey + Pzez, (24)

n vector of d’Alembert–Euler acceleration, which can be reconstructed according to
work [27] in issue I in Equation (78) as follows:

a = γxex + γyey + γzez =
.
v = ∂tv + (gradv)v, (25)

n velocity vector, which can be reconstructed according to work [27] in issue I in
Equation (55) as follows:

δx = vdt =
(
uex + vey + wez

)
dt, (26)

n normal vector, which can be reconstructed according to work [27] in issue I in Equation (57)
as follows:

n = cos(n, x)ex + cos(n, y)ey + cos(n, z)ez, (27)

n diade of viscous stresses, which can be reconstructed according to work [27] in issue I
in Equation (44) as follows:

τ = vxex ⊗ ex + vyey ⊗ ey + vzez ⊗ ez + τx
(
ez ⊗ ey + ey ⊗ ez

)
+τy

(
ez ⊗ ey + ey ⊗ ez

)
+ τz

(
ey ⊗ ez + ez ⊗ ey

)
,

(28)

n diade of rate of deformation, which can be reconstructed according to work [27] in
issue I in Equation (44) as follows:

d = D′1ex ⊗ ex + D′2ey ⊗ ey + D′3ez ⊗ ez + G′1
(
ez ⊗ ey + ey ⊗ ez

)
+

G′2
(
ez ⊗ ey + ey ⊗ ez

)
+ G′3

(
ez ⊗ ey + ey ⊗ ez

)
= 1

2(gradv+gradTv)
and δe ≡ ddt

(29)

It should be noted that Duhem was the first to identify the role of the “rate of defor-
mation” tensor d and also the Cosserats relation: d = F

.
EFT .
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2.4.1. Set of Governing Equations

Using numerous variational identities, which have since become well-known, Duhem
finally obtained a set of equations, as follows:
n motion, which can be reconstructed according to work [27] in issue I in Equation (74)

and (79) as follows:

ρa + gradπ = div(τ) + ρ
(

X(c) + X(i)

)
, (30)

n nonlocal state equation, which can be reconstructed according to work [27] in issue I
in Equation (75) as follows:

π + ρ2
(

A(i) + A(e)

)
− ρ2ζ,ρ = 0, (31)

n continuity, which can be reconstructed according to work [27] in issue I in Equation (60)
as follows:

d
dt

ρ + div(ρv) = 0, (32)

n Cauchy–Poisson condition on boundary, which can be reconstructed according to
work [27] in issue I in Equation (77) as follows:

P = (−πI + τ)n + div2(γI2), (33)

where the surface force consists of: P = vDt + νNv + νBv2t, from which the Duhem,
Navier, and Du Buat coefficients of surface viscosity, respectively, and γ is the elastic
surface tension. The tangent unit vector t is defined as t = v

|v| . By n, a unit vector nor-
mal to the boundary surface is denoted, and by div2(·), the surface (two-dimensional)
divergence is introduced, as well as I2 = I − n⊗n, which is a two-dimensional
surface metric.

2.4.2. Constitutive Equations

The hyper-thermodynamics of a nonlocal fluid is based on Duhem’s potential (Helmholtz
free energy) which was defined in work [27] in Equation (66) reconstructed as follows:

F =
∫

ζ(ρ, T)dω +
1
2

∫ ∫
ψ
(
ρ, ρ′, r

)
dm′ dm. (34)

where ζ is the specific free energy, dm = ρdω is the mass element, T is the temperature field,
and ρ is the density. The nonlocal free-energy ψ is a function of dm′ acting on a distance
of r = |x− x′| which was described in work [27] in Equation (67) reconstructed with an
additional nonlocal body force:

X(i) = −
∫

∂ψ

∂r
gradr dm′, (35)

and an additional nonlocal pressure

A(i) = −
∫

∂ψ

∂ρ
dm′. (36)

However, concerning the constitutive relation for viscous stresses, Duhem proposed
using the dissipation function of Thomson–Tait [dissipativitè] which is reconstructed accord-
ing to work [27] in issue I in Equation (55) as follows:

dτv = −2dt
∫

Ddω = −2 f dt, (37)
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where f =
∫

Ddω is a function of the diade d which is reconstructed according to work [27]
in issue I in Equation (54) as follows:

D =
λ(ρ, T)

2
θ2 + µ(ρ, T)

[
(u,x )

2 + (v,y )
2 + (w,z )

2 +
(
v,z +w,y

)
+ (w,x +u,z) +

(
u,y +v,x

)]
(38)

and according to work [27] in issue I in reconstructed Equation (51) as follows:

τ =
∂D
∂d
|ρ, T = const = −λ(ρ, T)Iθ − 2µ(ρ, T)d (39)

where θ is reconstructed according to Equation (52) in work [27] in issue I in the form:

θ = div(v) = u,x +v,y +w,z (40)

2.5. The Duhem Inequality [1901,§6]

Strikingly, Duhem, probably for the first time, proposed an entropy field ex cathedra
to be a scalar σ(t, x):

S =
∫

σ dm (41)

Next, starting from the global Clausius (in time and space), Duhem went on to describe
a local Clausius’ inequality reconstructed according to Equation (89) in work [27] in issue
I as:

∑
dQ
T

+
dS
dt

dt ≥ 0 (42)

In local variables, this took a form that depended on the free energy according to
work [27] in issue I at page 346 as follows:

dS
dt

=
d
dt

∫
σdm =

∫ dσ

dt
dm =

∫ [
− 1

E
∂2ζ(ρ, T)

∂T2
dT
dt

+
∂2ζ

∂ρ ∂T
dρ

dt

]
dm (43)

Duhem then described how the local form of the heat flux dQ, in works [27] in issue I
in Equation (80), which is reconstructed as follows:

EdQ = −E TdS− dτv (44)

and global entropy which is reconstructed according to work [27] in issue I in Equation (81)
as follows:

ES = −
∫

∂ζ(ρ, T)
∂T

dm (45)

Expressing the uncompensated working dτv in terms of the dissipation potential,
Duhem defines the entropy flux which is reconstructed according to work [27] in issue I in
Equation (86) as:

EdQ
T

=

∫ {
ET dσ

dt dm− 2Ddω
}

dt

T
(46)

And, finally, as according to reconstructed Equation (90) from paper [27] in issues I
is presented:

det



µ 0 0 0 0 0
0 µ 0 0 0 0
0 0 µ 0 0 0
0 0 0 λ + 2µ λ λ
0 0 0 λ λ + 2µ λ
0 0 0 λ λ λ + 2µ

 ≥ 0 (47)

At this point, the principal difference between Clausius and Duhem is that the Clausius
inequality (in terms of zero-dimensional model) states that the un-compensated heating is
>0, while for Duhem, the inequality (three-dimensional) states that the un-compensated
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working is >0. This inequality leads to D ≥ 0, if coefficients λ and µ, according to work [27]
in issue I at page 328, are as follows:

µ ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ2(λ + 2µ) ≥ 0, µ4(λ + µ) ≥ 0, µ5(3λ + 2µ) ≥ 0. (48)

From above, it follows that only two are independent which is reconstructed according
to work [27] in issue I in Equations (62) and (63):

µ ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ2(λ + 2µ) ≥ 0, µ4(λ + µ) ≥ 0, µ5(3λ + 2µ) ≥ 0. (49)

2.6. La Relation Supplémentaire (1901)

The above set of nonlocal Navier–Stokes equations is incomplete, as the field of local
temperature is not yet determined. Moreover, the balance of energy cannot be further used,
as it is responsible for starting the variational energy in the Lagrangean equations. There-
fore, Duhem, maintaining a line of Fourier reasoning, proposed a supplementary relation
for the temperature field. Even now, the status of this supplementary relation remains
unclear. First, Duhem defined heat flux dQ on the surface as dS which is reconstructed
according to work [27] in issue I in Equation (93):

µdQ = dt
∫

k(ρ, T)
∂T
∂n

dS = −
∫ {

k∆T +

[
∂k
∂ρ

gradρ +
∂k
∂T

gradT
]
· grad T

}
dω (50)

Next, balancing internal efforts, Duhem obtained his la relation supplémentaire which is
reconstructed according to work [27] in issue I in Equation (94) in the form:

k(ρ, T)∇2T +
∂k
∂T

(gradT)2 +
∂k
∂ρ

(gradT) · (gradρ) +
T
E

ρ
∂2ζ

∂T2

(
d
dt

T
)
+

T
E

ρ2 ∂2ζ

∂ρ∂T
(divv) + D = 0 (51)

which can be considered a generalized thermal equation of motion. D is defined in Equation (38).
The above set of governing equation is likely the first example of an original extension

of the so-called Navier–Stokes–Fourier equations, written for general fluids found in the
literature. The novelty of these equations is located in three points:

1 in the literature, nonlocal formulation, not only momentum, but also entropy equation;
2 a new kind of the momentum boundary condition Equation (33);
3 explicit use of an inequality for the restriction of values of the first and second

viscosity coefficient.

With reference to Equations (47)–(49), note that it is not Clausius’ inequality of
entropy—this inequality deals with energy as Duhem introduces the novel concept of
un-compensate working. Importantly, in the context of the current literature, some authors
like Truesdell and Toupin have wrongly interpreted the un-compensate working in terms of:
“entropy inequality”. Therefore, proposed by Truesdell, the expression “Clausius–Duhem
inequality” has no deeper historical background.

In our opinion, the reconstruction of Duhem achievements within the framework of
thermodynamics, made 60 years ago by Clifford Truesdell are incomplete and in the section
of energy balance, it can be developed in another way. Much better is a revalorization of
Duhem’s thermodynamics made by Brouzeng [2], however he is strongly influenced by the
framework of “the truesdellian school of rational thermodynamics”. Similarly, Duhem’s
concept of internal variables was significantly developed by Maugin and Muschik [12,13],
nevertheless, their treatment is too far from Duhem’s original, because it is under the strong
influence of Coleman. Probably, it was Josef Kestin who understood better and developed
the original Duhem model of internal variables [10,11].

3. Natanson’s Nonlinear Extended Thermodynamics

Referring to Natanson’s achievements nowadays, he is mainly recognized as a pi-
oneer of the quantum thermodynamics [3–5]. People also considered him as a veteran
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of science of linear non-equilibrium thermodynamics. Less is known about pioneering
works of Natanson on the subject of “nonlinear extended thermodynamics”. Natanson’s
papers [29–34], published simultaneously in four languages, are the first probe in the
literature to establish exact (nonlinear) foundations of the kinetic theory of gases. Note
that Natanson had learn the Maxwell’s approach [35] to modelling of gases at Cavendish
Laboratory during his private visit in years 1887–1889. The results of his researcher was
published firstly in the monograph Introduction to Theoretical Physics [9] and next in series
of publications [36–42].

3.1. Natanson’s Velocity Vectors

Following Maxwell’s approach, Natanson implemented the employment of two types
of velocity vectors: molar u and molecular c [9,33,34]:

u + c =
(
uex + vey + wez

)
+
(
ξex + ηey + ζez

)
(52)

Additionally, the body force f was taken into account by Natanson, revalorizing
Maxwell’s original approach [35], therefore it was possible to expand the Maxwell funda-
mental Equation (12) obtained in [9], which can be reconstructed as follows:

d
dt
(
Qn
)
+ div

(
nc⊗Q

)
+ div(u)Qn =

δ

δt

(
Qn
)
+ n

(
f · δQ

δu

)
(53)

This is now the familiar beginning for the kinetic theory of gases.

3.2. Continuity Equation

Referring to Maxwell’s reasoning, in exactly the same way, Natanson acquired a
governing evolution equation for another balanced quantities Q (topological charges). By
initially taking Q = m, and the next identities [36]:

c⊗Q = mc = 0, Qn = ρ, Q = m,
δQ
δu

= 0 (54)

Natanson arrived at the Euler mass continuity:

d
dt

ρ + ρdivu = 0 (55)

Then, by establishing (54) into (53), a non-conservative formula of the basic equation
was gained according to Equation (5) in Paragraph 1 of [37], which can be reconstructed
as follows:

ρ
d
dt

Q + div
(
ρc⊗Q

)
= ρ

δ

δt
Q + ρ

(
f · δQ

δu

)
(56)

in which the d’Alembert–Euler material derivative is indicated as follows:

d
dt
(·)X=const =

∂

∂t
(·)x=const + grad(·)u (57)

3.3. Balance of Linear Momentum

Next, putting Q = u + c and using the following identities:

Q = u, c⊗Q = c⊗ c,
δ

δt
Q = 0,

δQ
δu

= I (58)
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Natanson obtained the evolution of the linear momentum according to Equation (5) in
Paragraph 4 of [37], which can be reconstructed in the following form:

ρ
d
dt

u + div(ρc⊗ c) = ρf (59)

where, according to Gabriel Stokes and the British traditional instance of the Cauchy tension
tensor t, Natanson introduced a Stokes–Reynolds pressure tensor, denoted as: p = ρc⊗ c
(note that t = −p).

3.4. Balance of Total Energy

It was more difficult and time consuming for Natanson to balance the total energy. Taking
Q = (u + c) · (u + c) = (u + ξ)2 + (v + η)2 + (w + ζ)2 and a few not trivial identities

Q = u · u + 2c · u + c · c = u2 + c2 = u2 + ξ2 + η2 + ζ2 (60)

c⊗Q = cu · u + c · uc + u · uc + c · cc = 2u · cc + q (61)

div
(
ρc⊗Q

)
= div(ρq) + 2div(ρc⊗ c · u)

= div(ρq) + 2div(ρc⊗ c) · u + 2(ρc⊗ c) · u⊗∇ (62)

as well as
δ

δt
Q =

δ

δt
ξ2 +

δ

δt
η2 +

δ

δt
ζ2 = 0 (63)

and
ρf · δQ

δu
= 2ρf · u, p = ρc⊗ c, grad u ≡ u⊗∇, d =

1
2
(∇⊗ u + u⊗∇) (64)

Natanson, defined the heat energy flux as q = c · cc, arriving at:

ρ
d
dt

(
u2 + c2

)
+ div(ρq) + 2div(p) · u + 2p · d = 2ρf · u (65)

and after removing a contribution coming from momentum, ultimately arrived at the
Equation (4) in Paragraph 2 of work [36], which can be reconstructed in the form:

ρ
d
dt

(
c2
)
+ div(ρq) + 2p · d = 0 (66)

This is the part of the balance of the whole energy that is called the vis viva balance. It
should be mentioned that the concept of vis viva balance comes from Galileo Galilei (1636)
where this approach was used for the single mass (a stone falling from a tower). Therefore,
Equation (66) presents a simple extension of the vis viva balance into a continuum of
massive particles.

3.5. Evolution of Heat Flux

Furthermore, by considering Q = (u + c)⊗ (u + c)⊗ (u + c), Natanson decided to
take a source of energy flux as follows: Q = (u + c)(u + c) · (u + c) by exploring the
non-trivial identities:

Q = uu2 + u(c · c) + cu · c + cc · u + cc · c, (67)

c⊗Q = 2(c · u)c⊗ u + c2c⊗ u + u2c⊗ c + 2c · uc⊗ c + (c · c)c⊗ c, (68)

δ

δt
Q = u

δ

δt
c2 +

δ

δt
(u · c)c + δ

δt
q, (69)

f
δQ
δu

= f(u + c) · (u + c) + 2f(u⊗ u + c⊗ c), (70)
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3.6. Evolution of the Heat Flux and Linear Momentum Flux

Natanson according to Equation (2) in Paragraph 3 of [37] obtained the evolution
equation for energy heat flux vector q, which can be reconstructed as follows:

ρ = d
dt

[(
u2 + c2

)
u
(1)
+ 2(u · c)c + q

]

+div

 2ρ(u · c)u⊗ c
(2)
+ ρu⊗ q + ρu2c⊗ c+

(3)
+2(u · c)c⊗ c + (c · c)c⊗ c


= ρ δ

δt

[
c2u

(4)
+ 2(c · u)c + q

]
+ ρf

(
u2 + c2

)
+2f

[
ρu⊗ u

(5)
+ ρc⊗ c

]
(71)

This fully geometrically nonlinear equation that appeared in Natanson’s original paper
required 26 pages. Natanson found this equation suddenly in following papers [34,36–39].
Thus, the process of creating this formula can be divided into stages, namely: the part
designated with index 1 was created in paper [34], the part numbered with index 2 was
developed in paper [36], then the part numbered assigned with index 3 was derived in
paper [38], the part named with index 4 was established in paper [39] and the last part with
index 5 was formed in paper [37]. It is worth noting that a linear version of this equation
was discovered by Cattaneo in 1948 [11]:

∂

∂t
q +

q
τ
= κ gradT. (72)

Next, taking Q = (u + c)⊗ (u + c) and the appropriate identities:

Q = u⊗ u + c⊗ c ≡ u⊗ u + p (73)

c⊗Q = c⊗ u⊗ c + c⊗ c⊗ u + c⊗ c⊗ c (74)

div
(
ρc⊗Q

)
= div

(
p⊗ u2,3 + p⊗ u + ρc⊗ c⊗ c

)
= (gradp)u + p(divu) + (divp)⊗ c + pgradTu + div(ρc⊗ c⊗ c)

(75)

ρ
δ

δt
Q =

δ

δt
p, ρ

(
f · δQ

δu

)
= ρ(u⊗ f + f⊗ u) (76)

Natanson obtained the nonlinear evolution equation for momentum flux:

d
dt p + (gradu)p + p

(
gradTu

)
+ (divu)p + div(ρc⊗ c⊗ c)

+u⊗
(

ρδtu + ρugradTu + divp
)
+
(

ρδtu + ρugradTu + divp
)
⊗ u

= δ
δt p + ρ(u⊗ f + f⊗ u)

(77)

By next omitting parts u⊗ (·), (·)⊗ u and (u⊗ f + f⊗ u):

gradu = u⊗∇ =
1
2
(∇⊗ u + u⊗∇) + 1

2
(u⊗∇−∇⊗ u) = d + w (78)

Natanson arrived at Equation (12) in work [40], which is reconstructed as follows:

∂

∂t
p + (gradp)u + (d + w)p + p

(
d + wT

)
+ (divu)p + div(ρc⊗ c⊗ c) =

δ

δt
p (79)

Note that in comparison to Maxwell [35], the above equation of linear momentum
balance possessed a nonlinear contribution, which was developed due to an additional
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part in the basic Equation (53). It is the last term with the force f . This force was introduced
by Natanson to execute the Galilean principle of relativity, not only for a single material
point but for continuum of the material points.

Going further, by averaging Maxwellian’s procedure of “gas continuation”, Natanson
found a special form of a Galilean-non-objective derivative. Helpfully, Stanislaw Zaremba,
a professor of Jagiellonian University, after reading the paper [39], discovered, for the first
time in 1903, a new principle of relativity that was based on local in time transformations.

3.7. Evolution of Mass Flux Vector

According to Maxwell, by considering an evolution equation for a diffusion flux
j = ρu, Natanson was able to formulate the following equation, which is reconstructed
according to Equation (4) in Paragraph 6 of [41]:

∂

∂t
j + div(ρu⊗ u + ρc⊗ c) =

δ

δt
j + ρfA (80)

where fA is a diffusion force.

3.8. Hypothesis of Coertion

With the aim of determining a source of irreversibility in nature, Natanson stated the
definition of Coertia that is analogous to inertia. Coertia, specified by Natanson, can be
treated as a fundamental property of space, which is a reason for the irreversible phenomena
in matter, additionally in the electromagnetic and gravitational areas. Due to this point of
view, the irreversible changes assumed in the Maxwell mathematical approach are defined
as relaxation times [42]:

δ

δt
q = − q

τq
,

δ

δt
p = − p

τP
,

δ

δt
j = − j

τj
, (81)

in which τq, τp, τj are relaxation times for heat, momentum, and mass fluxes, respectively.

3.9. Logical Structure of Extended Thermodynamics (1901)

By focusing on the Maxwell procedure of determined moments of the fundamental
relation, Natanson quickly noticed the need for cutting the moment, thus establishing
the right closure equations. He suggested the crucial logical structure which takes Q as a
balanced quantity and the fQ flux of Q and FQ as a super-flux of fQ, the set of equations
could be specified [37]:

• Balance equation
∂

∂t
Q + divfQ = 0 (82)

• Evolution equation
∂

∂t
fQ +

1
τf

fQ + divFQ = 0 (83)

• Algebraic clousure for FQ

FQ = a2gradQ (84)

• Resulting equation for Q

∂2

∂t2 Q +
1
τf

∂

∂t
Q− a2div

(
gradQ

)
= 0 (85)

According to Natanson, the set of equations mentioned above refers to a whole real
phenomenon of nature, in which reversibility is connected with irreversibility by Equation
(81) in the relaxation time. Therefore, if τf = ∞ (inertia), it is a reversible term, whereas if
τf = 0 (coertia), it is an irreversible phenomenon.
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4. Objectivity of the Evolution Equations (1903)

At around 1903, yet another professor of Jagellonian University, Stanisław Zaremba,
started a general discussion on the possibility of Galilelian relativity extension to continua,
other than Maxwellian electromagnetic aether. From this position, Zaremba proposed
a group of transformations beyond the Lorentzian. Zaremba started from a clear argu-
ment [43–45] that: “Natanson’s evolution equation does not fulfill the principle of Galillelian
relativity”. Zaremba was especially interested in Natanson’s fully nonlinear evolution
equation for the linear momentum flux (Equation (79)), rewritten in the new form:

dM−N
dt

p + div(ρc⊗ c⊗ c) =
δ

δt
p (86)

where the Maxwell–Natanson (un-objective) time derivative is given as:

dM−N
dt

p =
δ

δt
p + (gradp)u + (d + w)p + p

(
d + wT

)
+ (divu)p (87)

Here, our revalorization, called “The Maxwell–Natanson Derivative”, is in opposition
to Truesdell’s reconstruction, which he called “The Maxwell–Zaremba Derivative” [46].
Such an expression erroneously suggests that the original Maxwell fundamental equation
is objective; it only becomes an objective after Zaremba’s correction. Assuming that

div(ρc⊗ c⊗ c) = 2nd,
δ

δt
p = − 1

τ
p, (88)

where τ is relaxation time. Zaremba obtains the geometrically nonlinear, un-objective,
Natanson equation:

τ
dM−N

dt
p + p = −2µd. (89)

In order to remove un-objectivity, Zaremba [44] proposed an interesting extension of
Galilean’s relativity, that has its roots in the Leibnitz–Berkeley relativity principle, which
had been earlier rediscovered by Pierre Duhem in his “ΣΩZEINTAΦAINOMENA” [47].
As Michał Heller mentioned [48], the special relativity theories based on the mechanical
approach are always more consistent than the special relativity theories based only on a
one single Lorentzian (i.e., electrodynamical) group of symmetry transformations. Even in
Cracow, Zaremba’s relativity theory was strongly opposite to Einstein’s fashionable theory
of special relativity, which was published at around the same time.

The Zaremba procedure [44] is mathematically extremely simple. Zaremba started
by comprising a new transformation between two observers. Letting the second observer
xα(t) be related to the first xi, i = x, y, z observer by the following:

xa(t) = Qαj(t)xj + bα(t) (90)

where the orthogonal tensor Qαj describes a time dependent rotation in which the bases ej
to eα and bα form a time dependent connecting vector. In this procedure, a spin between
the observers is defined as follows:

Wαβ = ∂tQαjQ−1
βj = −Wβα, W = Wαβeα ⊗ eβ. (91)

Now, rewriting the fundamental Natanson Equation (53) in the second (non-inertial)
observer system:

∂

∂t

(
nQ
)
+ div

[
n(u + c)⊗Q

]
=

δ

δt

(
nQ
)
+ nfr ·

∂Q
∂(u + c)

, (92)

one obtains a relative force fr:



Energies 2022, 15, 1881 17 of 22

fr = b + z + 2W(u + c) =
= fαeα +

[
−Wαβ(xα − bα)− 2Wαβ∂tbβ + ∂tWαβ

(
xβ − bβ

)
+ ∂t∂tbα

]
eα + 2Wαβ

(
uβ + cβ

)
eα

(93)

Considering (92) the case of momentum flux, we consequently obtain:

nQ = ρ(u + c)⊗ (u + c) = ρc⊗ c + ρu⊗ u = p + ρu⊗ u, (94)

n(u + c)⊗Q = ρ(u + c)⊗ (u + c) · ·(u + c) = ρu⊗ u⊗ u + u⊗ p + (p⊗ u)2,3 + J, (95)

nfr ·
∂Q

∂(u + c)
= ρ[( f + z)⊗ u + u( f + z)] + 2

(
Wp + pWT

)
+ 2
(

Wu⊗ u + u⊗ uWT
)

, (96)

where ρ = n m and J = ρc⊗ c⊗ c = Jαβγeα ⊗ eβ ⊗ eγ. Next, using the following identities:

∂tρ + div(ρu) = 0, l = gradu = u⊗∇, (97)

∂tnQ = ∂tp + u⊗ u(∂tρ) + ρ(∂tu)⊗ u, (98)

div(ρu⊗ u⊗ u) = lu⊗ (ρu) + (ρu)⊗ ulT − u⊗ u(∂tρ), (99)

div(u⊗ p) = (gradu)pT + u⊗ divp, (100)

div(p⊗ u) = (gradp)u + pdivu, (101)

div(p⊗ u)2,3 = (divp)⊗ u + pgradTu, (102)

∂tp + (gradp)u + lp + plT + (trl)p− 2
(
Wp + pWT)+ divJ

+u⊗
(

ρ∂tu + ρu
(

gradTu
)
+ divp

)
+
(

ρ∂tu + ρu
(

gradTu
)
+ divp

)
⊗ u

= δ
δt p + u⊗

[
−2ρuWT + ρ(b + z)

]
+ [2ρWu + ρ(b + z)]⊗ u,

(103)

by removing the independently fulfilled momentum balance from the above equation, we
obtain a general form of the evolution equation able to obtain an evolution equation within
the non-inertial frame:( .

p−Wp− pWT
)
+ (d + w−W)p + p

(
d + wT −WT

)
+ (trl)p + divJ =

δ

δt
p, (104)

with a decomposition of l = d + w and denotation of d/dt(p) =
.
p.

Now, the Zaremba principle of relativity can be formulated as a postulate according
to Equation (7) in Paragraph 2 of [45], which can be reconstructed in the form: “passive
transformations = active transformations”.

Which leads to equality
W = w, (105)

which is the so-called the co-rotational Zaremba derivative, which can be summarized
as follows:

d∗
dt

p =
∗
p =

d
dt

p−wp− pwT . (106)

By inserting the Zaremba derivative, we arrive at an objective evolution equation for
the flux of the linear momentum:

∗
p + divJ =

δ

δt
p− (dp + pd + pdivu). (107)

Thus, from the point of Zaremba’s investigations, it follows that the fundamental
equations within an arbitrary version (e.g., Maxwell, Boltzmann, and Natanson) should
fulfill some principle of relativity, which is formulated in terms of an appropriate group of
transformations. The equality of results of passive (motion of observer) and active (motion
of continua) transformations ultimately leads to the correct mathematical procedure and
the best way for obtaining the objective thermodynamics [6]. It should be added that the



Energies 2022, 15, 1881 18 of 22

name objective thermodynamics does not appear in the historical studies that we have
cited, however, T. Fülöp proposed the term objective thermodynamics [49].

5. Conclusions

There are a few common features that strongly connect both scientists under consider-
ation. Firstly, Duhem and Natanson were strongly influenced by Aristotelian thermody-
namics; especially his concept for the conservation of two special parameters: energea and
entelehia. The conservation of energeia and entelechia were a starting point for building the
concept of “perpetuum mobile” in the Renaissance, and, next in 19th-century, the concept
of First and Second Laws of Thermodynamics. It is unusual that Duhem and Natanson,
independently, developed a new concept of energy that was nothing like the first (main)
invariant of a general kind of motion, called peripatetic motion by Aristotle. From this
point of view, the notion of energy obeys the entire changes in nature.

Secondly, Duhem and Natanson had a common approach to the Second Law of
Thermodynamics, which could be interpreted as requirements stated for quality of energy.
If one interpreted the entelehy as a second invariant of peripatetic motion measuring the
energy quality, then the Aristotelian principle of entelehy conservation can be treated as the
pattern for the Duhem–Natanson principle of energy quality conservation. Contemporary,
this version of the Second Law of Thermodynamics could be related to the conservation or
the destruction of exergy (available energy) [50–59].

Thirty, both Duhem and Natanson had a specific approach to entropy and its balance.
Both started from a Boltzmannian concept of “entropy element” described by the Boltzmann
constant kB. If kB is an independent fundamental constant of physics, then, entirely, the
entropy and temperature are state parameters of more fundamental fields [60–62]. In the
Duhem reasoning taken from the old concept of caloric, it was some kind of “disconnected”
electromagnetic field that was hidden inside of matter. This means that Duhem’s entropy
indicates a certain field not a kind of matter. Another way in Natanson’s approach that his
treatment of entropy was similar to Maxwell [35] was related to the matter as a “specific
measure of collective motion of particles”. Therefore, Duhem photons can transport the
entropy, but for Natanson.

In modern thermodynamics, generally, Clausius entropy inequality plays the fun-
damental role. Thus, the relevance of Duhem’s and Natanson’s results is very week in
comparison to contemporary studies. For instance, the principle of least action, so preferred
by Duhem and Natanson, in modern thermodynamics, is not popular as a basic tool; most
scientists prefer a phenomenological approach. Another example is non-equilibrium ther-
modynamics, where, owing to the so-called Coleman–Noll procedure [63–66], the whole
system of governing equations is always finally reduced to the entropy production and is
presented as the Clausius–Duhem inequality. This was not satisfied from Duhem’s view,
as, originally, he assumed the inequality in the energy not entropy frame.

Generally speaking, for Duhem and Natanson, the sector of energy (quantity and
quality) was the place where the entire laws of thermodynamics needed to be formulated,
however, the balance of entropy was a second-rate balance equation that played a similar
role to the balance of mass or the balance of linear momentum. A quite different theory
structure is observed in modern thermodynamics, where the balance of entropy is the
most important among the other equations and, simultaneously, the balance of energy is
degraded and reduced to a simple equation only describing the field of temperature [67–70].
It is our general reflection that thermodynamics paradigms change very slowly, therefore,
both Duhem and Natanson’s achievements and original lines of reasoning should be
remembered and treated just as a part of history.

Among thermodynamics researchers, there is a deeply rooted belief in the impossibil-
ity of fitting, taking the laws of thermodynamics as a precise mathematical framework. This
leads to the impression that the mathematical foundations of our sciences have “shallow
roots” [71,72]. Looking at the theoretical base from a mathematical perspective, and espe-
cially at the first law of thermodynamics, it is impossible to identify a unique framework
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among the collection of numerous incomplete, restrictions on real energy conversion and
questionable mathematical equations [73,74]. There has been no experimental violation of
the first law of thermodynamics for more than 200 years, yet there remains no intellectual
ambition to develop a single mathematically consistent statement of the first and second
laws of thermodynamics. Therefore, the laws continue to be understood pragmatically and
taken by us “on faith”.

Most investigators are not interested in the mathematical foundation of nature, simply
because the foundations must first be extended and this is, as of yet, beyond our knowledge
limits. Referring to Josef Kestin, from a purely mathematical standpoint, we have a Babel-
like understanding of the foundations. This problem Maxwell undertakes in his Mater
and Motion, saying that “the foundation of the first law of thermodynamics requires
a knowledge of the whole of physics, chemistry, biology and even sociology”. While
at the end of 19th century this was possible, given the current volume of the literature,
today it is impossible to achieve such knowledge. The best examples of those that have
come close to achieving such a pinnacle are the subjects of this article, Pierre Duhem and
Ladislavus Natanson. Both invested much time and effort into building a mathematical
framework of generalized thermodynamics. Here, our aim was to reconstruct, in a way
that is understandable for a contemporary reader, a singular example of their original
mathematical approaches to thermodynamics.

Finally, we stress that there are many of similarities between these two scientists.
They both had a love of Aristotle and Maxwell, both were overcome by Cartesian’s ap-
proach to the description of gravitation and light, and both developed the Maxwellian
electrodynamics into a thermodynamic frame (Duhem—hidden, polycyclic thermodynam-
ics; Natanson—the quantum thermodynamics). However, perhaps the most impressive
similarity between these two is their unique scientific evolution. Both scientists started
as chemists—Pierre Duhem at the Stanislav College at Paris under the supervisor of the
largely underestimated Jules Moutier, and Ladislavus Natanson in a private laboratory
of Jerzy Bogucki (Marie Curie’s uncle) at Warsaw; both had excellent starting points. In
Table 1, we present a scheme outlining the steps in their evolution of knowledge, from
chemical practice to the thermodynamics, history of physics and, ultimately, to Aristotelian
metaphysic and wisdom. These unusual ways (Table 1) sciences developed were frequently
reported by Natanson in his philosophical papers, where he mentioned that the best pattern
to follow was that of P. Duhem. We completely agree with this statement.

Table 1. The frame of knowledge and scientific activity of Duhem and Natanson.

The Royal Way to Happiness
Thermo-chemistry

↓
Continuum Thermodynamics

↓
Electromagnetic Thermodynamics

↓
Gravitation Thermodynamics

↓
General Thermodynamics

↓
History of Physics

↓
Metaphysics

↓
Wisdom
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