Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Z-MAC protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 271 KB  
Article
Evaluating the Energy Costs of SHA-256 and SHA-3 (KangarooTwelve) in Resource-Constrained IoT Devices
by Iain Baird, Isam Wadhaj, Baraq Ghaleb, Craig Thomson and Gordon Russell
IoT 2025, 6(3), 40; https://doi.org/10.3390/iot6030040 - 11 Jul 2025
Cited by 2 | Viewed by 1728
Abstract
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility [...] Read more.
The rapid expansion of Internet of Things (IoT) devices has heightened the demand for lightweight and secure cryptographic mechanisms suitable for resource-constrained environments. While SHA-256 remains a widely used standard, the emergence of SHA-3 particularly the KangarooTwelve variant offers potential benefits in flexibility and post-quantum resilience for lightweight resource-constrained devices. This paper presents a comparative evaluation of the energy costs associated with SHA-256 and SHA-3 hashing in Contiki 3.0, using three generationally distinct IoT platforms: Sky Mote, Z1 Mote, and Wismote. Unlike previous studies that rely on hardware acceleration or limited scope, our work conducts a uniform, software-only analysis across all motes, employing consistent radio duty cycling, ContikiMAC (a low-power Medium Access Control protocol) and isolating the cryptographic workload from network overhead. The empirical results from the Cooja simulator reveal that while SHA-3 provides advanced security features, it incurs significantly higher CPU and, in some cases, radio energy costs particularly on legacy hardware. However, modern platforms like Wismote demonstrate a more balanced trade-off, making SHA-3 viable in higher-capability deployments. These findings offer actionable guidance for designers of secure IoT systems, highlighting the practical implications of cryptographic selection in energy-sensitive environments. Full article
Show Figures

Figure 1

12 pages, 1930 KB  
Article
Optimizing Tongue Fluid Sampling and Testing Protocols for Enhanced PRRSV Isolation from Perinatal Swine Mortalities
by Onyekachukwu Henry Osemeke, Isadora Machado, Elisa De Conti, Mariah Musskopf, Mafalda Pedro Mil-Homens, Samuel Stutzman, Baoqing Guo, Thomas Petznick, Gustavo De-Sousa-E Silva, Phillip Gauger, Jianqiang Zhang and Daniel C. L. Linhares
Viruses 2025, 17(1), 102; https://doi.org/10.3390/v17010102 - 14 Jan 2025
Cited by 3 | Viewed by 1694
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation. [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation. Four collection protocols were tested: extracting TF from fresh tissues using phosphate-buffered saline (PBS group), extracting TF from fresh tissues using virus transportation medium (VTM group), extracting TF from freeze-thawed tissue (freeze-thaw group), and using tissue homogenates (homogenate group). Two cell lines (ZMAC and MARC-145) and primary alveolar macrophages (PAM) were evaluated for their effect on successful PRRSV isolation. An eligible PRRSV-positive unstable breeding herd in Midwestern USA was chosen for the study. Tongues were collected in 20 batches (~30 mortalities per batch). Within each batch, each tongue tissue was cut into four quarters, with each quarter randomly assigned to one of the four collection protocols and RT-qPCR tested. Virus isolation (VI) was attempted on 10 batches. The mean RT-qPCR cycle threshold (Ct) values for the PBS, VTM, freeze-thaw, and homogenate groups were 21.9, 21.8, 22.6, and 24.8, respectively. The VI success rate was 22.6%, 12.1%, 2.8%, and 2.8% in the PBS, VTM, freeze-thaw, and homogenate groups, respectively. The probability of successful VI was 3.1% and 21.0% in the MARC-145 and ZMAC cell lines, respectively, and 4.8% in the PAM cells. TF from perinatal mortalities is an option for PRRS VI, aiding in PRRSV monitoring and control programs. Full article
(This article belongs to the Special Issue Viral Diseases of Livestock and Diagnostics, 2nd Edition)
Show Figures

Figure 1

23 pages, 5835 KB  
Article
Secure Z-MAC Protocol as a Proposed Solution for Improving Security in WSNs
by Mona Nasser Almansoori, Ahmad Ahmad Elshamy and Ahmad Abdel Muttalib Mustafa
Information 2022, 13(3), 105; https://doi.org/10.3390/info13030105 - 23 Feb 2022
Cited by 6 | Viewed by 4040
Abstract
Security is one of the major issues in Wireless Sensor Networks (WSNs), as poor security disrupts the entire network and can have a significant effect on data transmission. WSNs need safe data transmission at a high rate while maintaining data integrity. By modifying [...] Read more.
Security is one of the major issues in Wireless Sensor Networks (WSNs), as poor security disrupts the entire network and can have a significant effect on data transmission. WSNs need safe data transmission at a high rate while maintaining data integrity. By modifying the Z-MAC protocol and merging it with IHOP and elliptic-curve encryption techniques, the present research produced a novel protocol that enables safe data transfer. Additionally, the paper examined the IHOP technique for secure data transfer based on the Z-MAC protocol, which offers a simple and efficient key generation mechanism based on a hierarchical key management architecture. Additionally, the Z-MAC protocol offered low contention, high throughput, reduced latency, low power consumption, and increased efficiency. One of the most major applications of the Secure Z-MAC protocol may be the Vehicle Area Network, which would help in increasing highway automobile traffic while simultaneously enhancing individual safety and minimizing accidents. Full article
Show Figures

Figure 1

42 pages, 2380 KB  
Review
MAC Layer Protocols for Internet of Things: A Survey
by Luiz Oliveira, Joel J. P. C. Rodrigues, Sergei A. Kozlov, Ricardo A. L. Rabêlo and Victor Hugo C. de Albuquerque
Future Internet 2019, 11(1), 16; https://doi.org/10.3390/fi11010016 - 14 Jan 2019
Cited by 113 | Viewed by 25002
Abstract
Due to the wide variety of uses and the diversity of features required to meet an application, Internet of Things (IoT) technologies are moving forward at a strong pace to meet this demand while at the same time trying to meet the time-to-market [...] Read more.
Due to the wide variety of uses and the diversity of features required to meet an application, Internet of Things (IoT) technologies are moving forward at a strong pace to meet this demand while at the same time trying to meet the time-to-market of these applications. The characteristics required by applications, such as coverage area, scalability, transmission data rate, and applicability, refer to the Physical and Medium Access Control (MAC) layer designs of protocols. This paper presents a deep study of medium access control (MAC) layer protocols that are used in IoT with a detailed description of such protocols grouped (by short and long distance coverage). For short range coverage protocols, the following are considered: Radio Frequency Identification (RFID), Near Field Communication (NFC), Bluetooth IEEE 802.15.1, Bluetooth Low Energy, IEEE 802.15.4, Wireless Highway Addressable Remote Transducer Protocol (Wireless-HART), Z-Wave, Weightless, and IEEE 802.11 a/b/g/n/ah. For the long range group, Narrow Band IoT (NB-IoT), Long Term Evolution (LTE) CAT-0, LTE CAT-M, LTE CAT-N, Long Range Protocol (LoRa), and SigFox protocols are studied. A comparative study is performed for each group of protocols in order to provide insights and a reference study for IoT applications, considering their characteristics, limitations, and behavior. Open research issues on the topic are also identified. Full article
(This article belongs to the Special Issue 10th Anniversary Feature Papers)
Show Figures

Figure 1

44 pages, 1114 KB  
Article
Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks
by Abdul Razaque and Khaled M. Elleithy
Sensors 2014, 14(3), 5074-5117; https://doi.org/10.3390/s140305074 - 12 Mar 2014
Cited by 65 | Viewed by 11343
Abstract
This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC [...] Read more.
This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Back to TopTop