Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Yangtze River Protection Law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2729 KiB  
Article
A CLUMondo Model-Based Multi-Scenario Land-Use Change Simulation in the Yangtze River Delta Urban Agglomeration, China
by Yanhua Zhao, De Su, Yang Bao, Wei Yang and Yibo Sun
Sustainability 2022, 14(22), 15336; https://doi.org/10.3390/su142215336 - 18 Nov 2022
Cited by 6 | Viewed by 2521
Abstract
Land-use changes have profound effects on both socio-economic development and the environment. As a result, to optimize land-use planning and management, models are often employed to identify land-use patterns and their associated driving forces. In this work, physical and socioeconomic factors within the [...] Read more.
Land-use changes have profound effects on both socio-economic development and the environment. As a result, to optimize land-use planning and management, models are often employed to identify land-use patterns and their associated driving forces. In this work, physical and socioeconomic factors within the Yangtze River Delta Urban Agglomeration (YRDUA) from 2000 to 2015 were identified, integrated, and used as the foundation for a CLUMondo model. Subsequently, the Markov model and the CLUMondo model were combined to predict land-use changes in 2035. Natural growth (NG), economic development (ED), ecological protection (EP), and coordinated social and economic development (CSE) scenarios were set according to the land-use date in the assessment. Results showed that: (1) From 2000 to 2015, urban land increased by 8139.5 km2 (3.93%), and the paddy field decreased by 7315.8 km2 (8.78%). The Kappa coefficient of the CLUMondo model was 0.86, indicating that this model can be used to predict the land-use changes of the YRDUA. (2) When this trend was used to simulate landscape patterns in 2035, the land-use structure and landscape patterns varied among the four simulated urban development scenarios. Specifically, urban land increased by 47.6% (NG), 39.6% (ED), 32.9% (EP), and 23.2% (CSE). The paddy field was still the primary landscape, with 35.85% NG, 36.95% ED, 37.01% EP, and 36.96% CSE. Furthermore, under all four scenarios, the landscape pattern tended to simplify and fragment, while connectivity and equilibrium diminished. The results provided herein are intended to elucidate the law of urban agglomeration development and aid in promoting urban sustainable development. Full article
(This article belongs to the Special Issue Urban Ecological Security and Sustainability)
Show Figures

Figure 1

16 pages, 14598 KiB  
Article
Analysis on the Evolution and Resilience of Ecological Network Structure in Wuhan Metropolitan Area
by Liquan Xu, Zhentian Zhang, Gangyi Tan, Junqing Zhou and Yang Wang
Sustainability 2022, 14(14), 8580; https://doi.org/10.3390/su14148580 - 13 Jul 2022
Cited by 9 | Viewed by 3049
Abstract
With the accelerated urbanization and frequent occurrence of climate extremes, the regional ecosystem service level has ushered in a great challenge, and the resilience of the ecological network has gradually weakened, leading to lower ecological benefits and production levels. As a core ecologically [...] Read more.
With the accelerated urbanization and frequent occurrence of climate extremes, the regional ecosystem service level has ushered in a great challenge, and the resilience of the ecological network has gradually weakened, leading to lower ecological benefits and production levels. As a core ecologically sensitive area in the middle reaches of the Yangtze River, Wuhan metropolitan area has been expanding outward with rapid urbanization, crowding out surrounding arable and ecological land, and facing serious challenges to the sustainable development of the national space, while current cross-regional ecological protection measures need to be strengthened urgently, and exploring the structural resilience of its ecological network is of great significance to promote regional stability. In this study, Wuhan metropolitan area is taken as an example, and we explore the evolution and laws of ecological network structure from the perspective of network analysis by constructing ecological networks in Wuhan metropolitan area in 2000, 2010, and 2020. Firstly, we select regions from the ecological control line developed in China as ecological source sites, and also select multivariate data to supplement them. Then, the ecological network was established using the MCR model. Finally, network analysis was applied to discuss the evolution of network structure under multiple times and propose corresponding conservation strategies. The results show that (1) the major ecological resistance of Wuhan urban area has increased by 5.24% in 20 years. (2) The centrality and connectivity of the network nodes have increased over the 20-year period, and the overall structure of the network has stabilized and the resilience of the network has increased. (3) There is a strong link between changes in the network as a whole and local resilience. The results of the study will help analyze the relationship between the network as a whole and the region, and provide reference for optimizing the ecological network and constructing the systematic management of ecological security pattern. Full article
(This article belongs to the Special Issue Landscape Analysis, Planning and Regional Development)
Show Figures

Figure 1

19 pages, 1625 KiB  
Article
Comparison of Regional Urban Water Pollutants Emission Standards and Determination of Factors Influencing Their Integration—A Case Study of the Biopharmaceutical Industry in the Yangtze River Delta Urban Agglomeration
by Liping Cao, Xinyu Liu, Shuai Zhang and Mingjie Lyu
Sustainability 2022, 14(8), 4741; https://doi.org/10.3390/su14084741 - 15 Apr 2022
Cited by 4 | Viewed by 2516
Abstract
Urban pharmaceutical industries are responsible for high intensity emissions of water pollutants. The regional water pollutant emission standards vary greatly throughout the Yangtze River Delta Urban Agglomeration (YRDUA) in China, which, to some extent, results in increased risks and hidden dangers to regional [...] Read more.
Urban pharmaceutical industries are responsible for high intensity emissions of water pollutants. The regional water pollutant emission standards vary greatly throughout the Yangtze River Delta Urban Agglomeration (YRDUA) in China, which, to some extent, results in increased risks and hidden dangers to regional water environment safety, especially water quality. Under the national strategy of Yangtze River Delta ecological and green integration development, a unified standard of water pollutant emissions should be integrated into the integration development process, but differences between characteristic items, concentration limits, and conditions among four local standards of water pollutant emission have become a key influencing factor in their integration in industry and in green transformation. When comparing the water pollutant emission standards of the biopharmaceutical industry in three provinces and one municipality of the YRDUA, the factors influencing integration were determined and caused by the main differences in local water pollutant emission standards, namely, the race to the bottom of the biopharmaceutical industry, the inconsistency of environmental protection regulation law, and transboundary water pollution risks. From the perspective of urban water quality safety, we propose the following strategies for promoting the integration of water pollutant emission standards in the YRDUA: (1) increasing government funding for local water pollution governance and encouraging industries to adopt the third-party governance model for pollution control in the YRDUA; (2) unifying water pollutant emission standards and environmental law enforcement standards in the YRDUA with a mechanism involving shared economic responsibility; and (3) establishing a platform for sharing data and governance performance for the emission of water pollutants in the YRDUA. Full article
Show Figures

Figure 1

12 pages, 2919 KiB  
Article
Metacommunity Concepts Provide New Insights in Explaining Zooplankton Spatial Patterns within Large Floodplain Systems
by Baogui Liu, Chuanqiao Zhou, Lilin Zheng, Haixin Duan, Ying Chen and Guoxiang Wang
Water 2022, 14(1), 93; https://doi.org/10.3390/w14010093 - 4 Jan 2022
Cited by 2 | Viewed by 2635
Abstract
Flood pulse related physical variables (FLOOD) can affect zooplankton community structure through local factors directly and can also influence through regional dispersal factors of metacommunity concepts indirectly. Therefore, we infer that spatial patterns of zooplankton communities could be related to metacommunity concepts and [...] Read more.
Flood pulse related physical variables (FLOOD) can affect zooplankton community structure through local factors directly and can also influence through regional dispersal factors of metacommunity concepts indirectly. Therefore, we infer that spatial patterns of zooplankton communities could be related to metacommunity concepts and their importance may depend on the size of the aquatic/terrestrial transition zone (ATTZ). Herein, we explored the relative importance of limnological (LIMNO) and FLOOD variables in zooplankton community by analyzing data from 272 sites across three floodplain lakes in the middle reaches of the Yangtze River. Our results showed that the variation in the zooplankton community can be well explained by the LIMNO and FLOOD variables in all of the lakes under the low water level season. However, during the high water level season, neither LIMNO nor FLOOD can explain the spatial variances of zooplankton. Therefore, our results indicated that testing biogeographical theories and macroecological laws using zooplankton should consider temporal aspects of flood pulse. Furthermore, we noted that the number of explained variance by local variables is negatively correlated with the size of the ATTZ. Metacommunity concepts provide complementary insights in explaining zooplankton spatial patterns within large floodplain systems, which also provide a theoretical basis for ATTZ protection in floodplain management. Full article
Show Figures

Graphical abstract

13 pages, 378 KiB  
Article
Improving the Water Quality Monitoring System in the Yangtze River Basin—Legal Suggestions to the Implementation of the Yangtze River Protection Law
by Qiu Qiu, Liping Dai, Helena F. M. W. Van Rijswick and Gang Tu
Laws 2021, 10(2), 25; https://doi.org/10.3390/laws10020025 - 9 Apr 2021
Cited by 8 | Viewed by 5733
Abstract
The Yangtze River Basin is the largest river basin in China and has the most complex trans-boundary problems. The water quality monitoring system of the provincial boundary sections in the basin is the typical go-to system to show the interaction between administrative regions [...] Read more.
The Yangtze River Basin is the largest river basin in China and has the most complex trans-boundary problems. The water quality monitoring system of the provincial boundary sections in the basin is the typical go-to system to show the interaction between administrative regions and basins. In this article, we discuss the water quality monitoring system in the basin from a legal perspective, explore the achievements and deficiencies of the system, and identify the main elements that constrain the effective operation of the system in the basin, including the fragmented competencies of monitoring institutions, the different monitoring techniques, the overlapping monitoring contents and scopes, the different data releasing channels, and the different applications of the data. We provide legislative suggestions to implement the newly enacted Yangtze River Protection Law and valuable lessons for the design of monitoring systems in other countries or (trans-boundary) basins that face a similar situation. Full article
(This article belongs to the Section Environmental Law Issues)
Show Figures

Figure 1

Back to TopTop