Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Xlr3b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 4862 KB  
Review
The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS
by Isa van der Veen, Andrea Heredero Berzal, Céline Koster, Anneloor L. M. A. ten Asbroek, Arthur A. Bergen and Camiel J. F. Boon
Int. J. Mol. Sci. 2024, 25(2), 1267; https://doi.org/10.3390/ijms25021267 - 19 Jan 2024
Cited by 9 | Viewed by 7584
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss [...] Read more.
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE’s risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives. Full article
Show Figures

Figure 1

19 pages, 6013 KB  
Article
XLRS Rat with Rs1-/Y Exon-1-Del Shows Failure of Early Postnatal Outer Retina Development
by Eun-Ah Ye, Yong Zeng, Serafina Thomas, Ning Sun, Zeljka Smit-McBride and Paul A. Sieving
Genes 2022, 13(11), 1995; https://doi.org/10.3390/genes13111995 - 31 Oct 2022
Cited by 6 | Viewed by 3599
Abstract
We generated a Long Evans transgenic rat with targeted deletion of the whole Rs1 exon-1 and evaluated the pathological retinal phenotype of this Rs1-/Y rat model of X-linked retinoschisis (XLRS). The Rs1−/Y rat exhibited very early onset and rapidly progressive photoreceptor [...] Read more.
We generated a Long Evans transgenic rat with targeted deletion of the whole Rs1 exon-1 and evaluated the pathological retinal phenotype of this Rs1-/Y rat model of X-linked retinoschisis (XLRS). The Rs1−/Y rat exhibited very early onset and rapidly progressive photoreceptor degeneration. The outer limiting membrane (OLM) was disrupted and discontinuous by post-natal day (P15) and allowed photoreceptor nuclei to dislocate from the outer nuclear layers (ONL) into the sub-retinal side of the OLM. Dark-adapted electroretinogram (ERG) a-wave and b-wave amplitudes were considerably reduced to only 20–25% of WT by P17. Microglia and Müller glial showed cell marker activation by P7. Intravitreal application of AAV8-RS1 at P5–6 induced RS1 expression by P15 and rescued the inner nuclear layer (INL) and outer plexiform layer (OPL) cavity formation otherwise present at P15, and the outer-retinal structure was less disrupted. This Rs1−/Y exon-1-del rat model displays substantially faster rod cell loss compared to the exon-1-del Rs1-KO mouse. Most unexpected was the rapid appearance of schisis cavities between P7 and P15, and then cavities rapidly disappeared by P21/P30. The rat model provides clues on the molecular and cellular mechanisms underlying XLRS pathology in this model and points to a substantial and early changes to normal retinal development. Full article
(This article belongs to the Special Issue Study of Inherited Retinal Diseases)
Show Figures

Figure 1

10 pages, 1795 KB  
Article
Preliminary Evidence for Aortopathy and an X-Linked Parent-of-Origin Effect on Aortic Valve Malformation in a Mouse Model of Turner Syndrome
by Robert B. Hinton, Amy M. Opoka, Obah A. Ojarikre, Lawrence S. Wilkinson and William Davies
J. Cardiovasc. Dev. Dis. 2015, 2(3), 190-199; https://doi.org/10.3390/jcdd2030190 - 10 Jul 2015
Cited by 7 | Viewed by 6028
Abstract
Turner syndrome (TS), most frequently caused by X-monosomy (45,X), is characterized in part by cardiovascular abnormalities, including aortopathy and bicuspid aortic valve (BAV). There is a need for animal models that recapitulate the cardiovascular manifestations of TS. Extracellular matrix (ECM) organization and morphometrics [...] Read more.
Turner syndrome (TS), most frequently caused by X-monosomy (45,X), is characterized in part by cardiovascular abnormalities, including aortopathy and bicuspid aortic valve (BAV). There is a need for animal models that recapitulate the cardiovascular manifestations of TS. Extracellular matrix (ECM) organization and morphometrics of the aortic valve and proximal aorta were examined in adult 39,XO mice (where the parental origin of the single X was paternal (39,XPO) or maternal (39,XMO)) and 40,XX controls. Aortic valve morphology was normal (tricuspid) in all of the 39,XPO and 40,XX mice studied, but abnormal (bicuspid or quadricuspid) in 15% of 39,XMO mice. Smooth muscle cell orientation in the ascending aorta was abnormal in all 39,XPO and 39,XMO mice examined, but smooth muscle actin was decreased in 39,XMO mice only. Aortic dilation was present with reduced penetrance in 39,XO mice. The 39,XO mouse demonstrates aortopathy and an X-linked parent-of-origin effect on aortic valve malformation, and the candidate gene FAM9B is polymorphically expressed in control and diseased human aortic valves. The 39,XO mouse model may be valuable for examining the mechanisms underlying the cardiovascular findings in TS, and suggest there are important genetic modifiers on the X chromosome that modulate risk for nonsyndromic BAV and aortopathy. Full article
Show Figures

Graphical abstract

Back to TopTop