Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Welch’s periodogram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 22296 KB  
Article
Detection of Power Line Insulators in Digital Images Based on the Transformed Colour Intensity Profiles
by Michał Tomaszewski, Rafał Gasz and Jakub Osuchowski
Sensors 2023, 23(6), 3343; https://doi.org/10.3390/s23063343 - 22 Mar 2023
Cited by 11 | Viewed by 3523
Abstract
Proper maintenance of the electricity infrastructure requires periodic condition inspections of power line insulators, which can be subjected to various damages such as burns or fractures. The article includes an introduction to the problem of insulator detection and a description of various currently [...] Read more.
Proper maintenance of the electricity infrastructure requires periodic condition inspections of power line insulators, which can be subjected to various damages such as burns or fractures. The article includes an introduction to the problem of insulator detection and a description of various currently used methods. Afterwards, the authors proposed a new method for the detection of the power line insulators in digital images by applying selected signal analysis and machine learning algorithms. The insulators detected in the images can be further assessed in depth. The data set used in the study consists of images acquired by an Unmanned Aerial Vehicle (UAV) during its overflight along a high-voltage line located on the outskirts of the city of Opole, Opolskie Voivodeship, Poland. In the digital images, the insulators were placed against different backgrounds, for example, sky, clouds, tree branches, elements of power infrastructure (wires, trusses), farmland, bushes, etc. The proposed method is based on colour intensity profile classification on digital images. Firstly, the set of points located on digital images of power line insulators is determined. Subsequently, those points are connected using lines that depict colour intensity profiles. These profiles were transformed using the Periodogram method or Welch method and then classified with Decision Tree, Random Forest or XGBoost algorithms. In the article, the authors described the computational experiments, the obtained results and possible directions for further research. In the best case, the proposed solution achieved satisfactory efficiency (F1 score = 0.99). Promising classification results indicate the possibility of the practical application of the presented method. Full article
Show Figures

Figure 1

20 pages, 7361 KB  
Article
Investigation of Machine Learning Methods for Predictive Maintenance of the Ultra-High-Pressure Reactor in a Polyethylene-Vinyl Acetate Production Process
by Shih-Jie Pan, Meng-Lin Tsai, Cheng-Liang Chen, Po Ting Lin and Hao-Yeh Lee
Electronics 2023, 12(3), 580; https://doi.org/10.3390/electronics12030580 - 24 Jan 2023
Cited by 3 | Viewed by 3056
Abstract
Ethylene-Vinyl Acetate (EVA) copolymer was synthesized from ethylene and vinyl acetate at high temperatures and ultra-high pressures. In this condition, any reactor disturbances, such as process or mechanical faults, may trigger the run-away decomposition reaction. This paper proposes a procedure for constructing a [...] Read more.
Ethylene-Vinyl Acetate (EVA) copolymer was synthesized from ethylene and vinyl acetate at high temperatures and ultra-high pressures. In this condition, any reactor disturbances, such as process or mechanical faults, may trigger the run-away decomposition reaction. This paper proposes a procedure for constructing a conditional health status prediction structure that uses a virtual health index (HI) to monitor the reactor bearing’s remaining useful life (RUL). The piecewise linear remaining useful life (PL-RUL) model was constructed by machine learning regression methods trained on the vibration and distributed control system (DCS) datasets. This process consists of using Welch’s power spectrum density transformation and machine learning regression methods to fit the PL-RUL model, following a health status construction process. In this research, we search for and determine the optimum value for the remaining useful life period (TRUL), a key parameter for the PL-RUL model for the system, as 70 days. This paper uses four-fold cross-validation to evaluate seven different regression algorithms and concludes that the Extremely randomized trees (ERTs) is the best machine learning model for predicting PL-RUL, with an average relative absolute error (RAE) of 0.307 and a Linearity of 15.064. The Gini importance of the ensemble trees is used to identify the critical frequency bands and prepare them for additional dimensionality reduction. Compared to two frequency band selection techniques, the RAE and Linearity prediction results can be further improved to 0.22 and 8.38. Full article
(This article belongs to the Special Issue Selected Papers from Advanced Robotics and Intelligent Systems 2021)
Show Figures

Figure 1

21 pages, 4276 KB  
Article
A Novel Method for Baroreflex Sensitivity Estimation Using Modulated Gaussian Filter
by Tienhsiung Ku, Serge Ismael Zida, Latifa Nabila Harfiya, Yung-Hui Li and Yue-Der Lin
Sensors 2022, 22(12), 4618; https://doi.org/10.3390/s22124618 - 18 Jun 2022
Cited by 1 | Viewed by 3464
Abstract
The evaluation of baroreflex sensitivity (BRS) has proven to be critical for medical applications. The use of α indices by spectral methods has been the most popular approach to BRS estimation. Recently, an algorithm termed Gaussian average filtering decomposition (GAFD) has been proposed [...] Read more.
The evaluation of baroreflex sensitivity (BRS) has proven to be critical for medical applications. The use of α indices by spectral methods has been the most popular approach to BRS estimation. Recently, an algorithm termed Gaussian average filtering decomposition (GAFD) has been proposed to serve the same purpose. GAFD adopts a three-layer tree structure similar to wavelet decomposition but is only constructed by Gaussian windows in different cutoff frequency. Its computation is more efficient than that of conventional spectral methods, and there is no need to specify any parameter. This research presents a novel approach, referred to as modulated Gaussian filter (modGauss) for BRS estimation. It has a more simplified structure than GAFD using only two bandpass filters of dedicated passbands, so that the three-level structure in GAFD is avoided. This strategy makes modGauss more efficient than GAFD in computation, while the advantages of GAFD are preserved. Both GAFD and modGauss are conducted extensively in the time domain, yet can achieve similar results to conventional spectral methods. In computational simulations, the EuroBavar dataset was used to assess the performance of the novel algorithm. The BRS values were calculated by four other methods (three spectral approaches and GAFD) for performance comparison. From a comparison using the Wilcoxon rank sum test, it was found that there was no statistically significant dissimilarity; instead, very good agreement using the intraclass correlation coefficient (ICC) was observed. The modGauss algorithm was also found to be the fastest in computation time and suitable for the long-term estimation of BRS. The novel algorithm, as described in this report, can be applied in medical equipment for real-time estimation of BRS in clinical settings. Full article
Show Figures

Figure 1

19 pages, 53375 KB  
Article
Multi-Signal Detection Framework: A Deep Learning Based Carrier Frequency and Bandwidth Estimation
by Meiyan Lin, Xiaoxu Zhang, Ye Tian and Yonghui Huang
Sensors 2022, 22(10), 3909; https://doi.org/10.3390/s22103909 - 21 May 2022
Cited by 15 | Viewed by 5705
Abstract
Multi-signal detection is of great significance in civil and military fields, such as cognitive radio (CR), spectrum monitoring, and signal reconnaissance, which refers to jointly detecting the presence of multiple signals in the observed frequency band, as well as estimating their carrier frequencies [...] Read more.
Multi-signal detection is of great significance in civil and military fields, such as cognitive radio (CR), spectrum monitoring, and signal reconnaissance, which refers to jointly detecting the presence of multiple signals in the observed frequency band, as well as estimating their carrier frequencies and bandwidths. In this work, a deep learning-based framework named SigdetNet is proposed, which takes the power spectrum as the network’s input to localize the spectral locations of the signals. In the proposed framework, Welch’s periodogram is applied to reduce the variance in the power spectral density (PSD), followed by logarithmic transformation for signal enhancement. In particular, an encoder-decoder network with the embedding pyramid pooling module is constructed, aiming to extract multi-scale features relevant to signal detection. The influence of the frequency resolution, network architecture, and loss function on the detection performance is investigated. Extensive simulations are carried out to demonstrate that the proposed multi-signal detection method can achieve better performance than the other benchmark schemes. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning for Smart Sensing Applications)
Show Figures

Figure 1

16 pages, 3670 KB  
Article
Steady-State Visual Evoked Potential-Based Brain–Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern
by Nannaphat Siribunyaphat and Yunyong Punsawad
Sensors 2022, 22(4), 1439; https://doi.org/10.3390/s22041439 - 13 Feb 2022
Cited by 26 | Viewed by 8622
Abstract
Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems suffer from low SSVEP response intensity and visual fatigue, resulting in lower accuracy when operating the system for continuous commands, such as an electric wheelchair control. This study proposes two SSVEP improvements to create [...] Read more.
Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems suffer from low SSVEP response intensity and visual fatigue, resulting in lower accuracy when operating the system for continuous commands, such as an electric wheelchair control. This study proposes two SSVEP improvements to create a practical BCI for communication and control in disabled people. The first is flicker pattern modification for increasing SSVEP response through mixing (1) fundamental and first harmonic frequencies, and (2) two fundamental frequencies for an additional number of commands. The second method utilizes a quick response (QR) code for visual stimulus patterns to increase the SSVEP response and reduce visual fatigue. Eight different stimulus patterns from three flickering frequencies (7, 13, and 17 Hz) were presented to twelve participants for the test and score levels of visual fatigue. Two popular SSVEP methods, i.e., power spectral density (PSD) with Welch periodogram and canonical correlation analysis (CCA) with overlapping sliding window, are used to detect SSVEP intensity and response, compared to the checkerboard pattern. The results suggest that the QR code patterns can yield higher accuracy than checkerboard patterns for both PSD and CCA methods. Moreover, a QR code pattern with low frequency can reduce visual fatigue; however, visual fatigue can be easily affected by high flickering frequency. The findings can be used in the future to implement a real-time, SSVEP-based BCI for verifying user and system performance in actual environments. Full article
(This article belongs to the Special Issue Sensors for Brain-Computer Interface)
Show Figures

Figure 1

30 pages, 1188 KB  
Article
Cryptobiometrics for the Generation of Cancellable Symmetric and Asymmetric Ciphers with Perfect Secrecy
by Vicente Jara-Vera and Carmen Sánchez-Ávila
Mathematics 2020, 8(9), 1536; https://doi.org/10.3390/math8091536 - 8 Sep 2020
Cited by 3 | Viewed by 4043
Abstract
Security objectives are the triad of confidentiality, integrity, and authentication, which may be extended with availability, utility, and control. In order to achieve these goals, cryptobiometrics is essential. It is desirable that a number of characteristics are further met, such as cancellation, irrevocability, [...] Read more.
Security objectives are the triad of confidentiality, integrity, and authentication, which may be extended with availability, utility, and control. In order to achieve these goals, cryptobiometrics is essential. It is desirable that a number of characteristics are further met, such as cancellation, irrevocability, unlinkability, irreversibility, variability, reliability, and biometric bit-length. To this end, we designed a cryptobiometrics system featuring the above-mentioned characteristics, in order to generate cryptographic keys and the rest of the elements of cryptographic schemes—both symmetric and asymmetric—from a biometric pattern or template, no matter the origin (i.e., face, fingerprint, voice, gait, behaviour, and so on). This system uses perfect substitution and transposition encryption, showing that there exist two systems with these features, not just one (i.e., the Vernam substitution cipher). We offer a practical application using voice biometrics by means of the Welch periodogram, in which we achieved the remarkable result of an equal error rate of (0.0631, 0.9361). Furthermore, by means of a constructed template, we were able to generate the prime value which specifies the elliptic curve describing all other data of the cryptographic scheme, including the private and public key, as well as the symmetric AES key shared between the templates of two users. Full article
(This article belongs to the Special Issue Mathematics Cryptography and Information Security)
Show Figures

Figure 1

Back to TopTop