Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Weiku Oasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 24212 KiB  
Article
Spatial Prediction of Soil Organic Carbon Based on a Multivariate Feature Set and Stacking Ensemble Algorithm: A Case Study of Wei-Ku Oasis in China
by Zuming Cao, Xiaowei Luo, Xuemei Wang and Dun Li
Sustainability 2025, 17(13), 6168; https://doi.org/10.3390/su17136168 - 4 Jul 2025
Viewed by 300
Abstract
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) [...] Read more.
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) algorithms enables rapid, efficient, and accurate large-scale prediction. However, single ML models often face issues like high feature variable redundancy and weak generalization ability. Integrated models can effectively overcome these problems. This study focuses on the Weigan–Kuqa River oasis (Wei-Ku Oasis), a typical arid oasis in northwest China. It integrates Sentinel-2A multispectral imagery, a digital elevation model, ERA5 meteorological reanalysis data, soil attribute, and land use (LU) data to estimate SOC. The Boruta algorithm, Lasso regression, and its combination methods were used to screen feature variables, constructing a multidimensional feature space. Ensemble models like Random Forest (RF), Gradient Boosting Machine (GBM), and the Stacking model are built. Results show that the Stacking model, constructed by combining the screened variable sets, exhibited optimal prediction accuracy (test set R2 = 0.61, RMSE = 2.17 g∙kg−1, RPD = 1.61), which reduced the prediction error by 9% compared to single model prediction. Difference Vegetation Index (DVI), Bare Soil Evapotranspiration (BSE), and type of land use (TLU) have a substantial multidimensional synergistic influence on the spatial differentiation pattern of the SOC. The implementation of TLU has been demonstrated to exert a substantial influence on the model’s estimation performance, as evidenced by an augmentation of 24% in the R2 of the test set. The integration of Boruta–Lasso combination screening and Stacking has been shown to facilitate the construction of a high-precision SOC content estimation model. This model has the capacity to provide technical support for precision fertilization in oasis regions in arid zones and the management of regional carbon sinks. Full article
Show Figures

Figure 1

23 pages, 5975 KiB  
Article
Quantitative Retrieval of Soil Salinity in Arid Regions: A Radar Feature Space Approach with Fully Polarimetric SAR Data
by Ilyas Nurmemet, Aihepa Aihaiti, Yilizhati Aili, Xiaobo Lv, Shiqin Li and Yu Qin
Sensors 2025, 25(8), 2512; https://doi.org/10.3390/s25082512 - 16 Apr 2025
Cited by 3 | Viewed by 474
Abstract
Soil salinization is a critical factor affecting land desertification and limiting agricultural development in arid regions, and the rapid acquisition of salinized soil information is crucial for prevention and mitigation efforts. In this study, we selected the Yutian Oasis in Xinjiang, China as [...] Read more.
Soil salinization is a critical factor affecting land desertification and limiting agricultural development in arid regions, and the rapid acquisition of salinized soil information is crucial for prevention and mitigation efforts. In this study, we selected the Yutian Oasis in Xinjiang, China as the study area and utilized Gaofen-3 synthetic aperture radar (SAR) remote sensing data and field measurements to analyze the correlations between the salinized soil properties and 36 polarimetric radar feature components. Based on the analysis results, two components with the highest correlation, namely, Yamaguchi4_vol (p < 0.01) and Freeman3_vol (p < 0.01), were selected to construct a two-dimensional feature space, named Yamaguchi4_vol-Freeman3_vol. Based on this feature space, a radar salinization monitoring index (RSMI) model was developed. The results indicate that the RSMI exhibited a strong correlation with the surface soil salinity, with a correlation coefficient of 0.85. The simulated values obtained using the RSMI model were well-fitted to the measured soil electrical conductivity (EC) values, achieving an R2 value of 0.72 and a root mean square error (RMSE) of 7.28 dS/m. To assess the model’s generalizability, we applied the RSMI to RADARSAT-2 SAR data from the environmentally similar Weiku Oasis. The validation results showed comparable accuracy (R2 = 0.70, RMSE = 9.29 dS/m), demonstrating the model’s robustness for soil salinity retrieval across different arid regions. This model offers a rapid and reliable approach for quantitative monitoring and assessment of soil salinization in arid regions using fully polarimetric radar remote sensing. Furthermore, it lays the groundwork for further exploring the application potential of Gaofen-3 satellite data and expanding its utility in soil salinization monitoring. Full article
Show Figures

Figure 1

20 pages, 3908 KiB  
Article
Monitoring of Soil Salinity in the Weiku Oasis Based on Feature Space Models with Typical Parameters Derived from Sentinel-2 MSI Images
by Nigara Tashpolat and Abuduwaili Reheman
Land 2025, 14(2), 251; https://doi.org/10.3390/land14020251 - 25 Jan 2025
Cited by 1 | Viewed by 760
Abstract
Soil salinization, as one of the types of land degradation, is a global threat. It not only poses serious ecological problems, but also poses great challenges for the sustainable utilization of land resources, especially in arid and semi-arid areas. The Weiku Oasis is [...] Read more.
Soil salinization, as one of the types of land degradation, is a global threat. It not only poses serious ecological problems, but also poses great challenges for the sustainable utilization of land resources, especially in arid and semi-arid areas. The Weiku Oasis is undoubtedly one of the typical areas under severe salinization. The wide spread of saline soil brings numerous negative impacts to the local region. To prevent the escalation of soil salinization, timely monitoring of soil salinization is urgently needed for informed decision-making. Remote sensing technology can obtain large-scale datasets in a short period, allowing researchers to carry out the rapid and accurate investigation of soil salinization. Sentinel-2 images have a relatively high spatial resolution and provide red-edge bands data, referring to bands 5, 6, and 7, and the use of red-edge bands is a new approach to estimate soil salinization in the Weiku Oasis. In this study, we selected five typical indices (NDre1, RNDSI, MSAVI, NDWI, SI3, with the first two being red-edge indices) from twenty potential indices to construct multiple two-dimensional feature space models. Consequently, an optimal and novel monitoring index for soil salinization in the Weiku Oasis was developed. The result showed that: (1) The monitoring index MSAVI-RNDSI, which includes red-edge indices, had the highest inversion accuracy of R2 = 0.7998 and MAE = 3.3444; (2) The red-edge salinity indices effectively captured the conditions of salinization, with the feature space model composed of red-edge indices achieving an average inversion accuracy of R2 = 0.7902; (3) Land-use type was identified as the primary factor affecting the degree of soil salinization in the study area. The proposed approach provides a highly accurate and high-resolution soil salinity mapping strategy. Full article
Show Figures

Figure 1

19 pages, 4444 KiB  
Article
Weighted Variable Optimization-Based Method for Estimating Soil Salinity Using Multi-Source Remote Sensing Data: A Case Study in the Weiku Oasis, Xinjiang, China
by Zhuohan Jiang, Zhe Hao, Jianli Ding, Zhiguo Miao, Yukun Zhang, Alimira Alimu, Xin Jin, Huiling Cheng and Wen Ma
Remote Sens. 2024, 16(17), 3145; https://doi.org/10.3390/rs16173145 - 26 Aug 2024
Cited by 5 | Viewed by 1916
Abstract
Soil salinization is a significant global threat to sustainable agricultural development, with soil salinity serving as a crucial indicator for evaluating soil salinization. Remote sensing technology enables large-scale inversion of soil salinity, facilitating the monitoring and assessment of soil salinization levels, thus supporting [...] Read more.
Soil salinization is a significant global threat to sustainable agricultural development, with soil salinity serving as a crucial indicator for evaluating soil salinization. Remote sensing technology enables large-scale inversion of soil salinity, facilitating the monitoring and assessment of soil salinization levels, thus supporting the prevention and management of soil salinization. This study employs multi-source remote sensing data, selecting 8 radar polarization combinations, 10 spectral indices, and 3 topographic factors to form a feature variable dataset. By applying a normalized weighted variable optimization method, highly important feature variables are identified. AdaBoost, LightGBM, and CatBoost machine learning methods are then used to develop soil salinity inversion models and evaluate their performance. The results indicate the following: (1) There is generally a strong correlation between radar polarization combinations and vegetation indices, and a very high correlation between various vegetation indices and the salinity index S3. (2) The top five feature variables, in order of importance, are Aspect, VH2, Normalized Difference Moisture Index (NDMI), VH, and Vegetation Moisture Index (VMI). (3) The method of normalized weighted importance scoring effectively screens important variables, reducing the number of input feature variables while enhancing the model’s inversion accuracy. (4) Among the three machine learning models, CatBoost performs best overall in soil salt content (SSC) prediction. Combined with the top five feature variables, CatBoost achieves the highest prediction accuracy (R2 = 0.831, RMSE = 2.653, MAE = 1.034) in the prediction phase. This study provides insights for the further development and application of methods for collaborative inversion of soil salinity using multi-source remote sensing data. Full article
Show Figures

Figure 1

19 pages, 6880 KiB  
Article
The Relationship between the Carbon Fixation Capacity of Vegetation and Cultivated Land Expansion and Its Driving Factors in an Oasis in the Arid Region of Xinjiang, China
by Mengting Sun, Hongnan Jiang, Jianhui Xu, Peng Zhou, Xu Li, Mengyu Xie and Doudou Hao
Forests 2024, 15(2), 262; https://doi.org/10.3390/f15020262 - 29 Jan 2024
Cited by 2 | Viewed by 1632
Abstract
In the process of agricultural development in arid and semi-arid areas, the carbon fixation capacity of vegetation can be affected to different degrees, but research on its driving factors is lacking. Consequently, this paper focuses on the Weiku Oasis in Xinjiang as its [...] Read more.
In the process of agricultural development in arid and semi-arid areas, the carbon fixation capacity of vegetation can be affected to different degrees, but research on its driving factors is lacking. Consequently, this paper focuses on the Weiku Oasis in Xinjiang as its research area, in which the carbon fixation capacity of vegetation is estimated with the chemical equation of a photochemical reaction, using methods such as linear system models and Geodetector to analyze the relationship between cropland expansion characteristics and the carbon fixation capacity of vegetation from 1990 to 2020. The influence of land-use changes on the space differentiation of carbon fixation was elucidated through a time series relationship, and the synergistic effects of nine influencing factors on the carbon fixation capacity during the process of vegetation changes were discussed. The results were as follows: (1) In the process of agricultural development, the proportions of cultivated land area and spatial agglomeration had significant negative correlations with carbon sequestration, and the significance was rising, but the effect of cultivated land area proportion was more significant. (2) Through temporal sequential cooperativity analysis, when other land-use types were converted into cultivated land, the carbon fixation capacity of vegetation suddenly and significantly decreased in the initial year of the transformation, but the effect of cultivated land reclamation on the carbon fixation capacity of vegetation did not have a significant time lag. Moreover, after a certain period of time, cultivated land can gradually recover part of its lost carbon fixation capacity. (3) Among the nine driving factors, potential evapotranspiration is the most prominent in explaining the carbon fixation capacity of vegetation. This single-factor pairwise interaction presents the relationship between bivariate enhancement and nonlinear enhancement. When terrain factors interact with other factors, the enhancement effect of the influence on the carbon fixation capacity of vegetation has an obvious promotion effect. However, the change in the carbon fixation capacity of vegetation is more significantly influenced by potential evapotranspiration and the interaction between the normalized difference vegetation index (NDVI) and other factors. This research is helpful to understanding the basic theories related to the change in the carbon fixation capacity of vegetation during the process of agricultural development in arid and semi-arid areas, as well as providing theoretical reference for ecological environment construction and sustainable development. Full article
(This article belongs to the Special Issue Ecosystem Degradation and Restoration: From Assessment to Practice)
Show Figures

Figure 1

Back to TopTop