Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = VOPBA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4369 KiB  
Article
The Alpha-1 Subunit of the Na+/K+-ATPase (ATP1A1) Is a Host Factor Involved in the Attachment of Porcine Epidemic Diarrhea Virus
by Moukang Xiong, Xianhui Liu, Tairun Liang, Yanfang Ban, Yanling Liu, Leyi Zhang, Zheng Xu and Changxu Song
Int. J. Mol. Sci. 2023, 24(4), 4000; https://doi.org/10.3390/ijms24044000 - 16 Feb 2023
Cited by 6 | Viewed by 3748
Abstract
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor [...] Read more.
Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

9 pages, 702 KiB  
Article
NM23 Is a CP-Binding Protein Involved in Infectious Hypodermal and Hematopoietic Necrosis Virus Infection in Shrimp
by Xiaotong Yin, Xiaoshan Wang, Hui Sun and Rongmei Fei
Animals 2022, 12(5), 621; https://doi.org/10.3390/ani12050621 - 1 Mar 2022
Viewed by 2222
Abstract
The aim of this study was to identify the putative host cell receptor for Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) CP in the gill membrane of L. vannamei. Putative CP binding partners were screened first using a 2-dimensional Virus Overlay Protein [...] Read more.
The aim of this study was to identify the putative host cell receptor for Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) CP in the gill membrane of L. vannamei. Putative CP binding partners were screened first using a 2-dimensional Virus Overlay Protein Blot Assay (VOPBA) to probe isolated gill membrane proteins using recombinant CP. Putative binding partners were identified using mass spectrometry. A Phage Display Random Dodecapeptide Library was used to screen for dodecapeptides and motifs that bound to CP. Finally, putative binding pairs were confirmed using GST(glutathione-S-transferase) pulldown assays. 2-Dimensional VOPBA identified NM23 as a putative binding partner for IHHNV CP. GST pulldown experiments confirmed the direct interaction of NM23 and IHHNV CP. The phage display library was used to identify six groups of dodecapeptides that bound to CP. From these peptides, three characteristic binding motifs were identified, SW*Y, SKWV, and PQR. Interestingly, the SW*Y motif was also found in NM23. We are the first to implicate NM23 in IHHNV infection and postulate that it may bind to the CP using the SW*Y motif, although this remains to be confirmed. Full article
Show Figures

Figure 1

Back to TopTop